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The present paper deals with chromatographic lipophilicity determination of twenty-nine selected steroid derivatives
using reversed-phase high-performance liquid chromatography (RP HPLC) combined with two mobile phase, acetoni-
trile-water and methanol-water. Chromatographic behavior of four groups (triazole and tetrazole, toluenesulfonylhy-
drazide, nitrile and dinitrile and dione) of selected steroid derivatives was studied. Investigated compounds were grouped
using principal component analysis (PCA) according to their logk values for both mobile phases. Grouping was in the
very good accordance with the polarity and lipophilicity of the investigated compounds. QSRR (quantitative structure-re-
tention relationship) approach was used to model chromatographic lipophilicity behavior using molecular descriptors.

Reywords: Modeling was performed using linear regression (LR) and multiple linear regression (MLR) methods. The most influen-
Drug candidates ial molecular descri lipophilicity descriptors that are i for molecules abili hrough biological
Chemometrics tial molecular descriptors were lipophilicity descriptors that are important for molecules ability to pass through biologica
Lipophilicity membranes and geometrical descriptors. All established LR-QSRR and MLR-QSRR models were statistically validated

by standards, cross- and external validation parameters as well as with two graphical methods. According to all these
assessments, MLR models were better for chromatographic lipophilicity prediction. It was shown that chromatographic
systems with methanol-water were better for modeling of logk than systems with acetonitrile-water, as well as the sys-
tems that contained lower volume fractions of organic component in mobile phase. Modeling was performed in order to

Liquid chromatography
Quantitative structure retention rela-
tionships

obtain lipophilicity profiles of investigated compounds as future drug candidates of biomedical importance.

© 2016 Published by Elsevier Ltd.

1. Introduction

As one of the most important physicochemical characteristics,
lipophilicity has a crucial role in pharmacological behavior and activ-
ity of drugs, with an emphasis on passive transport through biologi-
cal membranes. Lipophilicity also affects the formation of complexes
between a compound and blood proteins and receptors at the site of
drug action in the organism [1,2]. Passive transport through biological
membranes is expressed as the 1-octanol/water partition coefficient
(logP,s,) [3]. The reference method for logP,,, determination is the
shake-flask method. Reversed-phase high-performance liquid chro-
matography (RP HPLC) represents a very good alternative method be-
cause of its good accuracy, low sample consumption, on-line detec-
tion and its ability to perform measurements even in a presence of
a mixture. Additionally, chromatography has high throughput ability
that is important regarding a very high number of potential drug can-
didates. Considering the crucial importance of the first step in selec-
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tion of the drug candidates it is very valuable to obtain any infor-
mation regarding physicochemical properties of selected drug candi-
date. The great advantage of HPLC is the possibility to use different
types of stationary phases and various numbers of the mobile phases.
Steroid compounds are usually present in small concentrations in var-
ious biological samples so analytical techniques of high sensitivity
are needed for their detection and quantification. Chromatographic
techniques are very useful in this field as well as for the lipophilic-
ity determination. Chromatographic behavior of molecules is condi-
tioned by functional groups presented in it and their position and ori-
entation dictates the chromatographic conditions (mobile and station-
ary phases) selection. Lipophilicity determination through chromato-
graphic analysis requires the use of strictly defined chromatographic
conditions.

Retention behavior of molecule in RP chromatographic system is
closely related to its lipophilicity [4]. Hence, chromatography is very
often used for lipophilicity determination of various number of dif-
ferent molecules [5]. In RP HPLC lipophilicity is commonly derived
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from the logarithm of the retention factor, logk:

t,—t,
log k = log
fo (€]

t. — retention time of a compound, #, — dead time (the first peak
on the chromatogram). As chromatographic lipophilicity, logarithm
of the retention factor, logk, could be used [6]. Because lipophilicity
of selected steroid derivatives could not be determined in pure water,
logk,, factor (theoretical capacity factor defined in pure water as mo-
bile phase) would not have any physical meaning. Lipophilicity values
can be also estimated using different software packages. Advantages
of chromatographic lipophilicity determination compared to software
lipophilicity determination is consistency of the retention parameters
determined at strictly defined chromatographic conditions. Addition-
ally, software lipophilicity determination provides several ways for
logP calculation for every software package and therefore the result
depends on the calculation procedure.

The role of lipophilicity is discussed in terms of quantitative struc-
ture-retention relationships (QSRR). Linear regression (LR) and mul-
tiple linear regression (MLR) were applied in order to establish linear
relationships between the experimentally observed logk values and in
silico molecular descriptors. As a classification tool, principal com-
ponent analysis (PCA) has been applied to group investigated com-
pounds regarding their logk values for both organic solvents.

Based on the importance of the selected steroid derivatives and
their biomedical importance, chromatographic lipophilicity of
twenty-nine compounds was examined under different chromato-
graphic conditions. Chromatographic retention was used for QSRR
modeling of chromatographic lipophilicity in order to conduct
lipophilicity determination for further biological analysis.

2. Material and methods
2.1. Studied steroids

The synthesis of these steroid derivatives has been published ear-
lier [7-10]. Their 2D structures and ITUPAC names are presented in
Table 1. The set of twenty-nine studied steroid derivatives was divided
into four groups: triazole and tetrazole (molecules 1.1-1.7), toluene-
sulfonylhydrazide (I1.8-I1.11), nitrile and dinitrile (II1.12-1I1.27) and
dione (IV.28 and IV.29). Substituents that occur in these molecules
are: OH (hydroxyl), O (ox0), Ac (acetyl) and Bn (benzyl).

2.2. Instrumentation and chemicals

For the chromatographic measurements an Agilent Technologies
1200 Series HPLC (Agilent, Santa Clara, California, USA) with diode
array (DAD) and evaporative light scattering detector (ELSD) system
was used. As stationary phase, ZORBAX SB-C18, 3.0 x 250 mm i.d.,
5 um particle size (Agilent, Santa Clara, California, USA) column was
used. Used acetone, acetonitrile and methanol were HPLC grade, pur-
chased from J. T. Baker (Deventer, Netherlands). Ultrapure water was
obtained in the laboratory using Millipore, Elix UV system and Sim-
plicity Water Purification System (Millipore, Molsheim, France).

2.3. Chromatographic procedure

Investigated compounds were dissolved in acetone in concentra-
tion of 1 mg/mL and filtrated throughout Captiva Econofilter (nylon
membrane, 25 mm diameter, 0.2 um pore size) (Santa Clara, Califor-
nia, USA). Chromatographic procedure was isocratic. A binary mix-

tures of acetonitrile and water and methanol and water were used as
the mobile phases. For ZORBAX SB-C18 column acetonitrile volume
fraction was 70-80 v/v and methanol 70-85 v/v. The flow rate and in-
jection volume was 0.6 mL/min and 10 pL. During the analysis, the
column temperature was held constant at 30 °C. DAD detection was
done at 210 nm. Operating temperature of ELSD detector was 40 °C,
pressure 3.5 bar and gain 5. All analysis were done in triplicate. Re-
tention data were expressed as the logk values as defined by Eq. (1)
and they were used as dependent variables in QSRR modeling.

2.4. In silico molecular descriptors

For molecular structure design the following software were used:
for 2D structure MarvinSketch 15.3.26 and for 3D structure Chem-
Bio3D Ultra 12.0 [11,12]. For the calculation of 380 molecular de-
scriptors 7 programs were used: ChemBioDraw Ultra 12.0, Chem-
Bio3D Ultra 12.0, PaDEL Descriptor, ALOGPS 2.1, PreADMET on-
line program, Molinspiration online program, MarvinSketch 15.3.26
[11-16]. For descriptor selection, the stepwise selection (SS) method
was used. In this method, after each step independent variable (de-
scriptor) is added in the model and all other are being checked for their
significance. The criterion for adding or removing the variables was
root mean square error (RMSE) [17]. In this paper, minimum RMSE
was set at 0.05 and each descriptor that increased the RMSE was re-
moved from the model. Selected data were used as input data for MLR
modeling [18]. The selected set of 22 molecular descriptors contains
15 lipophilicity, 4 geometrical, 2 physicochemical and 1 molecular
bulkiness descriptors. The molecular descriptors were calculated on
the basis of 2D structures, therefore, the structural optimization and
energy minimization were not required except in the case of molecu-
lar descriptors calculated using ChemBio3D Ultra 12.0 [12]. For the
formed 3D structures, energy minimization had to be done using mol-
ecular mechanics force field method (MM2). The energy minimiza-
tion was performed until the root mean square (RMS) value reached
a value smaller than 0.1 kcal/A mol. The values of the selected mole-
cular descriptors for QSRR modeling are presented in Supplementary
data (Table S1).

Lipophilicity descriptors (PC, ALogP, XLOGP2 and AClogS) are
used for prediction of chromatographic behavior, biological and
physicochemical characteristics of molecules [19-21]. As the
lipophilicity is the main promoter regarding passive transport through
biological membranes, it is a crucial characteristic when it comes to
pharmacological behavior and activity of drugs. Lipophilicity descrip-
tors are very important because they are often used as start elimination
factor for design and synthesis of new pharmacologically active drugs.
According to them, molecules of point of interest can be distinguished
and chosen for in vitro and in vivo experiments.

Other descriptors that figure in established QSRR models are geo-
metrical: LPMaxA (length perpendicular to the max area), MaxPR
(maximal projection radius), DE (dreiding energy) and Kier3 (kappa
shape index); physicochemical: FMF (the fraction of the size of the
molecular framework versus the size of the whole molecule) and
AMR (molar refractivity) and molecular bulkiness—TE (total energy
[kcal/mol]).

2.5. Chemometric tools

In this paper, one classification (principal component analysis) and
two regression techniques (linear and multiple linear regression) were
used as a chemometric tools. Principal component analysis is used
in order to reduce the amount of data when there is appearance of
correlation. If the variables are not correlated, this technique is not
useful [22]. With this method, grouping of similar objects into clus-
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Table 1
Chemical structures and TUPAC names of investigated steroids.
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ters is possible. PCA calculates new variables (latent) combining the
original variables and presents the data in a space where variables de-
fine the axes and data are projected into a few principal components
(PCs) [23]. The result of PCA analysis is shown through scores and
loadings plots. From scores and loadings plots, similarities among the
data can be observed. Scores reflect the new coordinates of the pro-
jected objects and loadings correspond to the direction with the respect
to the original variables [24]. Loadings plot present the relationships
between variables and scores plot present a data overview regarding
patterns or grouping. Loadings plot give information regarding vari-
ables contribution to the positioning of the objects on the scores plot.

Linear regression, as the simplest one, is used in chemometric as
the first step of the regression analysis. It correlates a dependent vari-
able and an independent variable and analyzes the relationship be-
tween them. Because it cannot correlate more than one independent
variable, multiple linear regression approach has to be applied. Multi-
ple linear regression method is used for correlation of more than one
independent variable and a dependent variable. There has to be no
multicollinearity between predictor variables in generated MLR mod-
els. The multicollinearity manifests through variance inflation fac-
tor (VIF) and values higher than 10 indicate that multicollinearity is
present in established MLR model [25-27]. Variables that have high
VIF values should be excluded from the model. Additionally, in MLR
models the ratio of the number of data and the number of variables has
to be equal or higher than 5, according to Topliss-Castello rule [28].

Established LR and MLR models were statistically validated and
their predictive ability was estimated through standard, cross- and ex-
ternal validation parameters. Standard statistical parameters include:
Pearson’s correlation coefficient (R), determination coefficient (RZ),
adjusted determination coefficient (Rzad,), Fisher’s test (£), root mean
square error (RMSE) and significance level (p). Cross-validation sta-
tistical parameters are: leave-on-out (LOO) cross-validation determi-
nation coefficient (chv), total sum of squares (7SS), predicted resid-
ual error sum of squares (PRESS), PRESS/TSS ratio and standard de-
viation based on predicted residual sum of squares (SDpgggs). Exter-
nal validation parameters include: Pearson’s correlation coefficient of
external test set (R,,,), determination coefficient of external test set
(R’ ) and root mean square error of external test set (RMSE,,,). All
regression calculations were conducted using NCSS 2007 program
[29].

3. Results and discussion
3.1. Chromatographic retention

As the most used bonded phase, octadecyl (C18) represents sil-
ica gel modified with long hydrocarbon chains with 18 carbon atoms.
In this way, stationary phase gets less polar than mobile phase. As it
is well known that the strong interactions occur between polar mo-
bile phase and polar molecules. Polar molecules travel faster through-
out the column and because of that, they have smaller retention than
non-polar molecules that form attractions with hydrocarbon groups on
the basis of van der Waals dispersion forces. Non-polar molecules are
being longer retained on the column and so they have higher retention.
Generally, as methanol is more polar solvent than acetonitrile, more
polar molecules are going to travel faster through the column and have
lower retention in methanol-water system. Since the investigated mol-
ecules are not very polar, it could be assumed that the interactions be-
tween them and acetonitrile-water mobile phase were stronger than
interactions between the analyzed compounds and mobile phase with

methanol. Therefore, the retention of the studied compounds in the
system with acetonitrile was lower than the retention in the system
with methanol. Retention data for both chromatographic systems were
expressed as the logarithm of the retention factor (logk) values and
results are shown in Supplementary data Tables S2 and S3. It can
be noticed that for both systems logk values are higher in chromato-
graphic systems with lower volume fraction of organic solvent. Hence,
the highest logk values for acetonitrile-water system were obtained
when acetonitrile 70 v/v was used, same as for methanol-water sys-
tem, when methanol 70 v/v was used.

Generally, it can be noticed that as the organic solvent volume
fraction increases the retention time decreases. According to the re-
tention data, in the first group (triazole and tetrazole) it can be no-
ticed that triazoles (compounds I.1-1.3) are more polar than tetra-
zole (1.4-1.7). Triazole that contain hydroxyl group (I.1 and 1.2) are
more polar than triazole containing benzyl group (I.3) and they are
the most polar compounds in this group. Among tetrazole, compounds
with acetyl group (I.4 and I.5) have higher polarity than those with
benzyl group (1.6 and L.7). In the second group (toluenesulfonylhy-
drazide) compound with hydroxyl group (II.8) is the most polar in its
group and it is more polar than compounds with acetyl (I1.9), ben-
zyl (IL10) and double acetyl group (IL.11). Compound containing
acetyl group (9) has higher polarity than compounds containing benzyl
(I1.10) and double acetyl group (II.11). Compound with benzyl group
(I1.10) has higher polarity than compound with double acetyl group
(IL11). The third group (nitrile and dinitrile) is the biggest group and
nitrile compounds (II1.12-II1.20) are more polar than dinitrile com-
pounds (IT1.21-111.27). Nitrile that contain hydroxyl (II1.12) and oxo
(IIL.13) group are the most polar among the nitrile. Nitrile with acetyl
and mesylate group (III.14-111.16) are more polar than nitrile with
benzyl and mesylate (IIL.17 and III.18), acetyl (IIL.19) and benzyl
(IT1.20) group. Compounds with benzyl and mesylate group (ITL.17
and I11.18) have higher polarity than compounds with acetyl (111.19)
and benzyl group (II1.20). Nitrile that contains acetyl group (I111.19)
has higher polarity than nitrile containing benzyl (I11.20). Dinitrile
with hydroxyl group (ITI.21 and II1.22) are more polar than dinitrile
with oxo (II1.23 and 111.24), double oxo (II1.25), acetyl (I11.26) and
benzyl (II1.27) group. Dinitrile that contain oxo (IIL.23 and 111.24)
and double oxo (IIL25) group are more polar than dinitrile contain-
ing acetyl (ITIL.26) and benzyl (ITI.27) group. Molecule from dini-
trile subgroup with acetyl (I11.26) has higher polarity than molecule
with benzyl (I111.27). In fourth group (homoandrostan) compound with
hydoxyl group (IV.28) has higher polarity than compound with oxo
group (IV.29). Polarity rises along the group number and along the
molecules that have the same substituents. With respect to the polarity
all investigated compounds behave in accordance with their functional
groups (hydroxyl > oxo > acetyl > benzyl) taking into account that hy-
droxyl group is the most and benzyl group the least polar functional
group. All of this is in accordance with chromatographic theory.

Linear regression parameters between logk values and acetonitrile
volume fraction for both organic solvents are shown in Table 2.

3.2. Correlation of retention data and calculted logP

In this study 16 computationally calculated lipophilicity descrip-
tors (Supplementary data Table S2) have been considered. Investi-
gated steroid derivatives can be considered as lipophilic according to
the obtained logP values (logP > 1) [6]. Values of logk calculated for
different chromatographic systems were correlated with computation-
ally calculated lipophilicity descriptors. The best linear dependence
was found for the relationships between logk versus ClogP and PC
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Table 2

Linear regression parameters between logarithm of the retention factor (logk) and acetonitrile/methanol volume fraction.

Compound y=a-x+bh

ZORBAX SB-C18 acctonitrile-water ZORBAX SB-C18 methanol-water

a b R R’ a b R R
I.1 - - - - —0.0454 3.2513 0.9999 0.9999
12 -0.0169 0.5839 0.9961 0.9922 —0.0442 3.3488 0.9999 0.9999
L3 -0.0312 2.7011 0.9996 0.9993 —0.0641 59171 0.9997 0.9994
14 -0.0271 2.0990 0.9996 0.9993 —0.0512 4.2519 0.9996 0.9993
L5 —0.0277 2.3104 0.9995 0.9990 —0.0550 4.7536 0.9994 0.9988
1.6 —0.0341 2.8585 0.9997 0.9995 —0.0598 5.2842 0.9998 0.9997
L7 —0.0352 3.0961 0.9996 0.9993 —0.0643 5.8332 0.9997 0.9994
1.8 —0.0415 2.5228 0.9999 0.9998 —-0.0607 4.4001 0.9997 0.9994
1.9 —0.0584 4.5815 0.9614 0.9243 —0.0673 5.5482 0.9994 0.9989
.10 —0.0451 3.7767 0.9998 0.9996 —0.0742 6.4880 0.9995 0.9990
.11 —0.0407 3.5321 0.9997 0.9995 —-0.0705 6.1524 0.9995 0.9990
.12 - - - - —0.0439 2.9020 0.9974 0.9948
1I.13 —0.0307 1.8289 0.9999 0.9998 —0.0404 2.6924 0.9999 0.9999
.14 —0.0352 2.5838 0.9999 0.9998 —0.0543 4.2709 1.0000 1.0000
.15 —0.0352 2.6476 0.9999 0.9998 —-0.0555 4.4416 0.9999 0.9998
1L.16 —0.0343 2.6658 0.9998 0.9997 —0.0557 4.5713 0.9998 0.9996
.17 —0.0412 3.3004 0.9998 0.9997 —0.0620 5.2761 0.9997 0.9994
Mr.18 —0.0413 3.4247 0.9999 0.9998 —0.0642 5.6133 0.9997 0.9994
1r.19 —0.0341 3.1325 0.9997 0.9995 —0.0606 5.5063 0.9997 0.9994
11.20 —0.0416 3.9202 0.9998 0.9996 -0.0715 6.7420 0.9998 0.9996
.21 — - - — — - - -
.22 —0.0560 3.2884 0.9966 0.9933 —0.0528 3.3500 0.9973 0.9947
11.23 —0.0383 2.2007 0.9988 0.9976 —0.0463 2.8926 0.9980 0.996
.24 —0.0331 1.8315 0.9997 0.9995 —0.0499 3.2084 0.9972 0.9945
11.25 —0.0369 2.1405 0.9992 0.9985 -0.0478 3.0236 0.9983 0.9967
11.26 —-0.0331 2.4725 0.9999 0.9998 -0.0518 4.0894 0.9997 0.9995
.27 —-0.0393 3.1988 0.9998 0.9997 —0.0604 51771 0.9998 0.9996
1v.28 - - - - - - - -
V.29 —0.0258 1.5705 0.9999 0.9999 —0.0394 2.8482 1.000 1.0000

values (Fig. 1). Good correlation of logk values with lipophilicity de-
scriptors indicate that chromatographic retention (logk) can be used as
a chromatographic lipophilicity parameter.

3.3. Principal component analysis

For the PCA, as input data, logk values for all five volume fractions
for both organic solvents were used in order to group studied steroid
derivatives regarding their similiarities. The PCA analysis was con-
ducted using program Statistica v. 10 [30].

Obtained PCA model for logk for acetonitrile-water system is
shown through two principal components. These two principal com-
ponents describe 99.94% of total variance. PCI1 contributes with
99.52% and PC2 with 0.42% of total variance. Scores and loadings
plots for this PCA analysis are shown in Supplementary data (Fig.
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group) compounds are positioned and less polar (with acetyl and ben-
zyl group) compounds are positioned on the negative and of PC1 axis.

Regarding PCA model obtained for logk for methanol-water sys-
tem, it is expressed through two principal components. These two
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Fig. 1. Experimentally obtained logk versus calculated logP and PC values.
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principal components describe 99.98% of total variance. PC1 con-
tributes with 99.72% and PC2 with 0.26% of total variance. Scores
and loadings plots are presented in Supplementary data (Fig. S2).
From loadings plot, it can be noticed that on the position of the inves-
tigated compounds on the scores plot all five volume fractions have
almost the same influence, regarding both PC1 and PC2. All five vol-
ume fractions have negative coefficients of latent variables relative
to PC1 axis. Volume fractions marked as MeOH 70, MeOH 75 and
MeOH 77.5 have positive and volume fractions marked as MeOH 80
and MeOH 85 have negative coefficient of latent variables relative to
PC2 axis. According to PCI axis, from scores plot it can be noticed
that investigated compounds are grouped according to their polarity.
On the positive end of PC1 axis more polar compounds that contain
oxo and hydroxyl functional groups are positioned. Compounds that
have acetyl and benzyl functional group are less polar and they are
possitioned toward the negative end of PC1 axis. The results of con-
ducted PCA analysis indicate that polarity is presponsible for discrim-
ination between the investigated compounds.

3.4. Interpretation of selected QSRR models

QSRR-LR and QSRR-MLR models were obtained using NCSS
2007 program [29]. The best established models were selected and
presented in this paper. In order to obtain statistically valid and mean-
ingful models, internal and external validation was conducted. Inves-
tigated compounds were divided into two sets, calibration and exter-
nal test set. Calibration set for acetonitrile-water system consists of 20
compounds — 80% of total number of compounds (1.2, 1.3, 1.4, 1.6,
1.7,1L.8, I1.9, I1.11, 111.14, I11.16, I11.17, I11.18, I11.19, I11.20, 111.22,
111.23, I11.24, 111.25, 111.26, I11.27). For methanol-water system, cal-
ibration set consists also of 22 compounds — 80% of total number of
compounds (.1, 1.2, 1.3, 1.4, 1.6, 1.7, IL8, IL.11, 11112, 11114, 1116,
1I1.17, 11118, IIL.19, II1.20, IIL.21, IIL.22, 11123, II1.24, IIL.25,
111.26, I11.27). External test set is the same for both mobile phases
and it consists of 5 compounds — 20% of total number of compounds
(L5, T1.10, 11113, TIL15, TV.29). Molecules L1, TIL.12, TI1.21 and
1V.28 were excluded from calculations regarding system with acetoni-
trile and I11.21 and 1V.28 from system with methanol, as their reten-
tion times were not defined under given chromatographic conditions.
In this paper, the best QSRR models are shown, for four linear regres-
sion and four multiple linear regression models. Obtained LR models:

LR1: logke gacnmo = 0.3009 (£0.0330) CLogP — 1.1026
(+0.1498) )

LR2: logkcigacnso = 0.2871 (20.0377) CLogP — 1.4187
(£0.1714) 3)

LR3: logkcgmeoro = 04308 (£0.0314) PC — 1.2050
(£0.1389) 4)

LR4: logke: gueonso = 0-3696 (£0.0312) PC — 1.5145
(+0.1380) 5)

Shown LR-QSRR models are obtained using calibration test. Next
step was internal and external validation. Statistical parameters for lin-
ear regression models are shown in Table 3. From this table, it can
be concluded that all four obtained LR models are statistically valid

Table 3
Statistical parameters of internal and external validation for QSRR-LR models.

Parameters  LR1 LR2 LR3 LR4
CISACN70 CISACNS0 CI8MeOH70  C18 MeOH 80

R 0.9068 0.8735 0.9509 0.9357
R 0.8223 0.7630 0.9042 0.8756
Ry 0.8124 0.7498 0.8994 0.8694
F 83.30 57.94 188.79 140.78
RMSE 0.2218 0.2537 0.2064 0.2051

p 0.000000 0.000000 0.000000 0.000000
R, 0.7902 0.7201 0.8896 0.8569
7SS 4.9820 4.8888 8.8984 6.7641
PRESS 1.0452 1.3682 0.9828 0.9681
PRESS/TSS ~ 0.2098 0.2799 0.1104 0.1431
SDppss 0.2286 0.2616 02114 0.2098
R 0.9675 0.9304 0.9760 0.9585
Ry 0.9360 0.8656 0.9526 0.9188
RMSE, 0.1167 0.1491 0.1484 0.1476

test

by standard, cross- and external statistical parameters. As R? have val-
ues significantly higher than 0.64 that confirms a very strong correla-
tion between variables. High values of Rzadj (higher than 0.70) and low
values of RMSE also indicate good statistical validity. Predictive abil-
ity of established models is confirmed by parameters of cross- and ex-
ternal validation. Relatively low PRESS and SDpppsg values and high
values of RZCv (higher than 0.60) also contribute to the quality of estab-
lished models. Parameters of external validation for all four LR mod-
els additionally confirm the statistical validity and predictive ability of
these models. In all four models, lipophilicity descriptors CLogP and
PC have a dominant effect and a positive regression coefficient affect-
ing the logk. This shows that retention behavior of investigated com-
pounds in RP HPLC system depends on their lipophilicity that has the
greatest influence on the molecule distribution between stationary and
mobile phase.

The predictive power of established models was tested by two
graphical methods. Fig. 2 shows experimental logk versus predicted
values and experimental logk values versus residuals for four LR
models. Comparison of experimental and predicted data indicates that
there is good fit of data for all four LR models. Additionally, it can be
noticed that the residuals are randomly distributed around y = 0 axis
which indicates that prediction error is unpredictable. According to all
given parameters and graphical view, as the best models, equations
LR3 and LR4 can be selected. It can be noticed that for the same vol-
ume fractions of organic solvents in mobile phases, better models for
logk prediction were derived for system methanol-water. Also, lower
volume fraction of organic solvent in mobile phase gives better QSRR
models. As LR models give insight only on influence of one factor
on retention of the investigated compounds, it was necessary to apply
multivariate regression method. Simplicity and possibility of mecha-
nistic interpretation is the advantage of LR models but given that chro-
matography is very complex process, the influence of the more than
one factor on the retention was investigated.

Molecular descriptor selection for QSRR-MLR models was done
by stepwise selection (SS) in NCSS 2007 program [29]. In order to
avoid the over-parameterization of the mathematical model and cor-
relation between descriptors it is very important to define the num-
ber of independent variables in the model [31]. In accordance with
Topliss-Costello rule, maximum number of molecular descriptors in
model is four. Established MLR models were free of multicollinear-
ity. The VIF values were calculated for independent variables in each
model. Cross-validation was done using leave-one-out (LOO)
method. Obtained MLR models for logk prediction:
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Fig. 2. Experimental logk versus predicted and experimental logk versus residuals for four LR models.

MLRI: logke gacnro = 0.4480 (£0.0450) PC +0.0798
(+0.0252) LPMaxA — 2.4912 (+0.6428) FMF — 0.0691

(+£0.0386) Kier3 — 1.2474 (£0.2907) ()

MLR2: logke gacngo = 0.4495 (£0.0962) ALogP + 0.0091
(+0.0032) TE + 0.2006 (£0.0534) PC + 0.1587 (+0.0490)

MaxPR — 3.1153 (£0.3432) (7

MLR3: logkesueorro = 0.0186 (0.0035) TE + 0.4079
(+0.0400) PC — 0.0060 (+0.0013) DE + 0.1188 (0.0381)

MaxPR — 2.3605 (+0.2453) ®)

MLR4: logkClSMeOHSO =—0.2536 (i00816)
XLOGP?2 — 0.2845 (+0.1236) AClogS + 0.0005 (+0.0019)

AMR + 0.4558 (£0.0565) PC — 2.1678 (+0.4264) )

All established MLR models contain one or more lipophilicity de-
scriptors (PC, ALogP, XLOGP2 and AClogS). The second most com-
mon group of descriptors in these MLR models, that can be found
in three models, are geometrical — LPMaxA, Kier3, MaxPR and DE.
In the establishment of these models also participate following mol-
ecular descriptors: physicochemical — FMF and AMR and molecu-
lar bulkiness — TE. As the most influential lipophilicity descriptors
PC and ALogP have positive and XLOGP2 and AClogS have nega-
tive influence on logk. All four MLR models were validated by stan-
dard, cross- and external statistical parameters. Statistical parameters
for multiple linear regression models are shown in Table 4. According
to VIF values that were calculated for every independent variable in

Table 4
Statistical parameters of internal and external validation for QSRR-MLR models.

Parameters ~ MLRI MLR2 MLR3 MLR4
CI8ACN70 CI8ACN&) C18MeOH70 C18MeOH 80
R 0.9650 0.9645 0.9849 0.9599
R’ 0.9313 0.9303 0.9700 0.9214
Ry 0.9130 09117 0.9629 0.9029
F 50.83 50.06 137.18 49.79
RMSE 0.1511 0.1507 0.1254 0.1769
P 0.000000 0.000000 0.000000 0.000000
VIF 3.5pc 1.2 ALogr 2.6 6.8 x10Gr2
L1 [pnaxa 1.4 g 4.4 pc 4.6 Aciogs
2.5 pme 4.9 pc 2.2 pg L1 avr
2.4 Kier3 42 MaxPR 4.1 MaxPR 4.4 PC
R, 0.8666 0.8716 0.9518 0.8727
7SS 4.9820 4.8888 8.8984 6.7641
PRESS 0.6646 0.6278 0.4285 0.8609
PRESS/TSS  0.1334 0.1284 0.0482 0.1273
SDppiss 0.1823 0.1772 0.1396 0.1978
R 0.9760 0.9862 0.9985 0.9164
Ry 0.9526 0.9726 0.9970 0.8397
RMSE, 0.1004 0.0673 0.0376 0.2074

test

model, multicollinearity is below the given limit (VIF <10). Very
high values of R’ (in range from 0.9214 to 0.9700) and Rzadj (from
0.9029 to 0.99629) indicate very good predictive ability of generated
MLR models. Low values of cross-validation statistical parameters
as PRESS values and SDpgyss and high values of chv (from 0.8666
to 0.9518) contribute to good statistical quality of models. The ex-
ternal test set gives the most confident information about the predic-
tive power of established models. Parameters of external validation
R’ s Nigher than 0.8397 and RMSE ,, lower than 0.2074 indicate very

strong correlation between variables. In Fig. 3 is shown graphical test
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Fig. 3. Experimental logk versus predicted and experimental logk versus residuals for four MLR models.
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of the predictive power of established models through experimen-
tal logk versus predicted values and experimental logk values versus
residuals for four MLR models. Comparison of experimental and pre-
dicted data indicates that there is good fit of data for all models. Ad-
ditionally, it can be noticed that the residuals are randomly distributed
around y = ( axis which also confirms the predictive power of estab-
lished models. The same trend can be noticed at MLR as at the LR
models that better models were derived for methanol-water systems
and that lower volume fraction of organic solvent in mobile phase
gives better MLR-QSRR models.

Established MLR models have better standard, cross- and external
validation parameters than LR models. That gives them advantage in
retention lipophilicity prediction for investigated steroid derivatives.
QSRR modeling of chromatographic lipophilicity was performed in
order to obtain good physicochemical profiles of investigated com-
pounds as future drug candidates of biomedical importance.

4. Conclusion

The QSRR modeling was successfully carried out on the set of
twenty-nine (triazole and tetrazole, toluenesulfonylhydrazide, nitrile
and dinitrile and dione) selected steroid derivatives. According to
PCA method, the best discrimination factor between the investigated
compounds is their polarity. The most influential molecular descrip-
tors in QSRR modeling were lipophilicity and geometrical descrip-
tors. All of these descriptors affect molecules ability to pass into the
cells and reach receptor site in the organism. The best LR-QSRR
and MLR-QSRR models were selected and confirmed by comprehen-
sive statistical validation. It was noticed that chromatographic sys-
tems with methanol-water and lower volume fractions of organic com-
ponent in mobile phase were better for logk prediction. Chromato-
graphic lipophilicity of investigated compounds as future drug candi-
dates of biomedical importance successfully correlates with in silico
lipophilicity descriptors. They can be presented as function of reten-
tion value logk and in that way reflect the lipophilicity of investigated
steroid derivatives.
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