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and temperature, and then to the 5-hr lyophilization process. The results showed that
all three osmodehydration parameters statistically significantly affected dry matter
content and a,, of successively dehydrated samples, reaching peak values of 83.63%

and 0.433 of dry matter content and a,, respectively. Osmodehydration process

W
Funding information

Povincial Secretariat of Higher Education
and Scientific Research, Autonomous
Province of Vojvodina, Republic of
Serbia, Grant/Award Number: 142-451-
2289/2021-01/02

contributed to upgrading overall dehydration effectiveness, while a, values reduc-
tion in lyophilization stage contributed to the increased samples’ microbiological sta-
bility. Mineral matter content was highly increased, up to 8.63, 248.30, 64.05, and
101.56 times higher, for K, Ca, Mg, and Fe, respectively, as a consequence of molasses
application. Developed mathematical models of 12 responses of osmotic dehydration
and lyophilization processes were statistically significant, well-describing synergetic
performance of two successive dehydration methods.

Novelty impact statement: Osmotic dehydration, as a simple, low energy-demanding
process, especially with molasses used as an osmotic solution, was applied in effort
to reduce the extent of further dehydration phase. The osmotic dehydration phase
also supplemented mineral matter content of the dehydrating peach samples with its
high value nutritional content. Lyophilization, as energy demanding, yet high quality-

producing technique, as a successive dehydration phase, provided peach samples of

very high dry matter content and very low a,, values in reduced duration of application.

1 | INTRODUCTION

agents, flows from the solution to the food, in minor extent (Da

Costa Ribeiro et al., 2016). The driving force of the mass transfer

Water is the main factor that affects foods’ chemical and microbi-
ological stability, whereby lowering water activity values, the food
products shelf-life can be increased and stability can be prolonged
(Blanda et al., 2009; Moreno et al., 2013). The osmotic dehydration
process consists of the immersion of the food material in a hyper-
tonic solution, where water diffuses from the food toward the solu-
tion, due to the semi-permeability of the cell membranes of food
tissue and, in the opposite way, the solute, used as osmotic solution

in the process is the concentration difference between the osmotic
solution and the interstitial fluid (Ciurzynska et al., 2016). Sugar beet
molasses has proven to be good choice as an osmotic solution, due
to its technological effectiveness in mass transfer phenomena and
its highly valued nutritive composition and low cost as a by-product
of sugar industry (Filipovic et al., 2017; Nicetin et al., 2021).

The osmotic dehydration process is simple, with low energy de-
mands and the equipment used for this method is cheap. It is used
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as one of the steps in food processing, where biological material is
treated before finalization to the final product. For the further final-
ization processes, freezing, lyophilization, vacuum, and convective
drying, can be used (Mandala et al., 2005; Shi & Xue, 2009).

Lyophilization is a valuable technique for producing high-quality
dehydrated products with very high dry matter content. Low pro-
cessing temperatures help to preserve nutrients, such as minerals,
vitamins, and flavonoids (Igual et al., 2019). Lyophilization is consid-
ered better than air drying mainly due to less damage to the heat-
sensitive compounds, while the product can be easily reconstituted
with water (Fahloul et al., 2009). Application of this technology in the
food industry has been limited to high added value products, since
long processing times and high operation costs are needed for ob-
taining adequate quality lyophilized products. Considering process
energy consumption, lyophilization requires almost the double the
amount of energy for the removal of 1 kg of water from dehydrating
material in comparison to conventional drying (Liu et al., 2008).

Peach has favorable nutritional content, free of sodium, fat, and
cholesterol, with rich content of Vitamins Aand C (Yadav et al., 2012);
hence, preserving and possibly increasing its’ nutritional content is
of great importance.

The combination of these two dehydration methods (osmotic de-
hydration in molasses and successive lyophilization), where the final
result provides enhanced nutritive composition of the dehydrated
product, is not yet investigated.

The goal of this research is to investigate and model the effect
of technological parameters on osmotic dehydration in molasses and
successive lyophilization of peaches dehydration method perfor-
mance, in effort of obtaining new and nutritionally improved peach
products.

2 | MATERIAL AND METHODS

2.1 | Osmotic dehydration process of peaches

The initial dry matter content of the fresh peaches (Prunus persica,
var. nucipersica) was 7.40% + 0.08%. Before the osmotic treat-
ment, peaches were washed with running water, dried with paper
towels, peeled, and cut into cubes, of approximate dimensions of
I1x1x1lcm.

Sugar beet molasses had initial dry matter content of 85.04%.
Distilled water was used for the preparation of dilutions of the sugar
beet molasses to the solution concentrations of 60%, 70%, and 80%
of dry matter.

The osmotic dehydration process was performed in laboratory
vessels under atmospheric pressure, at a constant temperature
chamber (Memmert IN160, Germany). The temperature of the pro-
cess varied between 20, 35, and 50°C.

The duration of the process was varied between 1, 3, and 5 hr.

The sample (peach cubes) to osmotic solution (sugar beet mo-

lasses solution) ratio of 1:5 (weight/weight) was used, to reduce
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excessive solution dilution. Peach samples were immersed in mo-
lasses and stirred every 15 min for the purpose of better molasses
homogenization with the defunded water from the peach samples.
After the end of the process, peach samples were taken out from
molasses solutions to be lightly washed with water and gently blot-
ted to remove excess water.

The final dry matter content of fresh and osmotically dehydrated
peaches in molasses was determined by drying the peach samples at
105°C for 24 hr in a heat chamber (Instrumentaria Sutjeska, Serbia)
until a constant mass was achieved. All analytical measurements
were carried out in accordance with AOAC. Water activity (a,) of
the osmotic dehydrated samples was measured using a water activ-
ity measurement device (TESTO 650, Germany) with an accuracy of
+0.001 at 25°C.

2.2 | Lyophilization

Osmotically dehydrated and fresh peach samples were frozen and
stored at -30°C until lyophilization. Frozen samples were weighted
and approximately 30 g of samples were placed in Freeze Dryer Christ
ALPHA1-2 LD, s, Osterode am Harz, Germany. Lyophilization pa-
rameters were set to pressure of the 1.6 Pa, condenser temperature
of =57°C, and duration of the lyophilization of 5 hr. After the lyophi-
lization process, samples were weighted and water activity (a,, ) was

measured the same, as in case of osmotically dehydrated samples.

2.3 | Analysis of chemical and mineral
matter content

Analysis of chemical content of fresh and treated (osmodehydrated
and lyophilized) peach samples was performed according to the
official methods of AACC: proteins (AACC, 2000a), sugar (AACC,
2000b), and ash (AACC, 2009).

The contents of potassium (K), calcium (Ca), magnesium (Mg),
and iron (Fe) of fresh and treated (osmodehydrated and lyophilized)
peach samples were performed according to 1ISO 6869:2000.

All analyses on tested samples were done in triplicates.

2.4 | Calculations
2.4.1 | Calculation of osmotic dehydration
responses

In order to describe the effectiveness of the mass transfer of the
osmotic dehydration process, dry matter content after osmotic de-
hydration (DMC) was calculated for different temperatures and pro-

cessing times:
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where m; and m.are the initial and final mass (g) of the samples, respec-
tively (Filipovi¢ et al., 2013).

242 |
Response

Calculation of Lyophilized Samples’

Dry matter content of lyophilized peach samples was determined

according to:

DMC

—_——eem
DMC, = %”L . 100% 2)
L

where DMC, is dry matter content of samples after lyophilization, m,,
is the mass of samples prior lyophilization, and m is mass of samples
after lyophilization.

Water loss of osmodehydrated peach samples in the lyophiliza-
tion stage (WL, ) was determined according to:

WL = (100 - DMC) — (100 — DMC, ) (3)

2.4.3 | Response surface methodology
Second-order polynom was used for experimental data fitting.
Twelve models of the following form were developed to relate 12

responses (Y) to three process variables (X):

3 3 2 3
Yo =B+ 2 B0Xi+ D BaX + Y Y BgXiXpk=1-12 (4)
i ia

i=1 j=itl

where were: ﬂkij regression coefficients; Y were either DMCqp (Yl),
a,0p (Yo DMC| (Y5) WL, (Y,), a,, (Yc), proteins (Y), sugar (Y-), ash (Y),
K (Y,), Ca (Y,,), Mg (Y,,) or Fe (Y,,) and X represents process time (X,),
osmotic solution concentration (X,), and process temperature (X).

The significance of the effect and interaction of individual fac-
tors, for every response, was determined by analysis of variance
(ANOVA) and application of post hoc Tukey HSD test. For ANOVA
and RSM analysis, StatSoft Statistica ver.12.0 software package is
used.

3 | RESULTS

Table 1 shows DMC and a,, values of osmodehydrated and lyophi-
lized samples at different applied osmotic dehydration process pa-
rameters. Maximal obtained DMC value of 50.81% was achieved
after 5-hr osmotic dehydration process in molasses of maximal con-
centration (80%), at maximal process temperature of 50°C.

The minimal obtained a,, value was 0.864, achieved at the same
set of technological parameters as in case of maximal obtained DMC
value.

Fresh and osmotically dehydrated peach samples were subjected
to the second dehydration stage—lyophilization process. The results

azifst - wiLey- 1

of the same analysis (dry matter content and water activity), after the
lyophilization stage (DMC, and a,,,), are also presented in Table 1.

Maximal obtained DMC, value of 83.63% was achieved in suc-
cessive dehydration process of 5-hr osmotic dehydration stage in
molasses of maximal concentration (80%), at a maximal process tem-
perature of 50°C, and lyophilization stage (pressure of the 1.6 Pa,
condenser temperature of -57°C, and duration of 5 hr).

In Table 2, values of chemical and mineral matter content of fresh
and treated (osmodehydrated and lyophilized) peach samples, are
shown.

The ANOVA calculation, presented in Table 3, showed the effects
of the independent variables (osmodehydration process time, molas-
ses’ concentration, and osmodehydration process temperature) on
all investigated responses (osmotic dehydration and lyophilization
processes’ responses, chemical and mineral matter content).

Table 4 shows regression coefficients of 12 s order polynom
models of responses of osmotic dehydration and lyophilization
processes, chemical and mineral matter content of peach samples.

Statistical significance of individual coefficients is also marked.

4 | DISCUSSION

Analysis of DMC values (after first dehydration stage—osmotic de-
hydration process), Table 1, shows that with the increase of all three
parameters’ values (time, concentration, and temperature) DMC
values of osmodehydrated peach samples statistically significantly
increased. This trend is the same as in osmotic dehydration process
of other biological materials—plant (Misljenovic et al., 2012, Niéetin
et al., 2017; Knezevi¢ et al., 2019) and animal raw materials (Curci¢
et al.,, 2015; Filipovi¢ et al., 2013, 2017).

Values of a, after the first dehydration stage, Table 1, show a
similar trend of the effect of technological parameters, as in case of
DMC values, except with the increase of all three parameters val-
ues, osmodehydrated peach samples a, values statistically signifi-
cantly decreased. Minimal obtained a,, value is in accordance with
other obtained osmodehydrated plant material a,, values at similar
applied technological parameters: 0.860—carrot cubes (Misljenovi¢
et al., 2012) and 0.820—celery root (Nicetin et al., 2017).

Since the lyophilization process of the constant parameters was
applied to all osmodehydrated peach samples, the differences be-
tween DMC, values are similar to the ones in DMC values (after the
first stage of dehydration), Table 1. The effects of different applied
technological parameters of the osmodehydration process have the
same tendencies in the lyophilized peach samples, as in osmodehy-
drated peach samples. The increase of all three osmodehydration
technological parameters has also led to the statistically significant
increase of DMC, values of two-stage dehydrated peach samples.

Analyzing lyophilization stage performance, it can be seen that
a higher level of present water content in samples after the first os-
modehydration stage had led to higher water removal in the second,
lyophilization dehydration stage (WL, values), Table 1. For example,
the highest water removal in the lyophilization stage had occurred in
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lyophilization of sample osmodehydrated during 1 hr, in molasses of
70% concentration, at 35°C (WLL = 42.63%), where DMC value was
only 18.42%, reaching 61.04% after lyophilization stage. With the in-
crease of osmodehydration stage duration, the water removal in the
lyophilization stage (indicated with WL, values, or increase of DMC,
values) has statistically significantly decreased. This dehydration
rate reduction of the lyophilization stage can be explained by the dif-
ferent accessibility of present water in samples (Mathlouthi, 2011)
dehydrated at different osmodehydration parameters. In osmode-
hydration processes, where lower DMC values were obtained, more
free or less-bound water was preserved in osmodehydration sam-
ples, where in successive lyophilization stage, this water was easily
removed. In osmodehydration processes, where higher DMC values
were obtained, only strong-bound water, harder to remove, re-
mained for the lyophilization stage to be removed; hence, the lower
dehydration rates of the lyophilization stage were determined.

Dehydration effectiveness contribution of osmodehydration
process, as a pretreatment to lyophilization, can be best seen by an-
alyzing the level of obtained DMC of the peach samples, subjected
only to lyophilization stage. Obtained DMC values of single-stage
lyophilized samples were up to 5.45 times lower than in the dehy-
dration processes with osmotic dehydration. This result can also be
viewed from the perspective of time and energy consumption re-
duction in the lyophilization process, since obtaining the same level
of moisture content in a single-stage lyophilization process, would
require much longer time and energy consumption.

Similar to DMC, values, a,, values were statistically significantly

wi
affected by all three varied osmodehydrated process parameters,
Table 1. Trends of the effects are the same as in case of a, values,
with the increase of all three osmodehydration parameters’ values,
lyophilized peach samples’ a,, values statistically significantly de-
creased, reaching minimal value of 0.433. This obtained a, value
provides exceptional microbiological stability, since it is below
growth limiting a, value for all microorganisms (Tortora et al., 2013).

The lyophilization stage of dehydration had led to much more
significant peach samples a, values reduction than the osmotic
dehydration stage. Peach samples’ a,, values had lowered for up to
0.431 units in the lyophilization stage, where maximum of a,, values
reduction in the osmodehydration process was for 0.076 units.

From the presented results of protein content, Table 2, it can be
seen that there was no statistically significant difference of fresh
and treated peach samples, indicating that the protein content of
fresh peaches was preserved throughout the successive dehydra-
tion processes.

From the results of the sugar content, it can be seen that by
applying the highest values of osmodehydration technological pa-
rameters, sugar content has statistically significantly decreased in
comparison to fresh peach samples. These results indicate that high
initial sugar content of fresh peach samples (Colaric¢ et al., 2004) was
lowered for up to 3.21% after dehydration treatments. Two mass
transfers of the osmodehydration process (Filipovic et al., 2014) can
lead to this sugar content balance. Water loss from the osmodehy-
drating peach material can cause dissolved sugar leakage, while solid

azifst - wiLey-L”

gain from molasses, as an osmotic solution, can replace the part of
the lost sugar content, considering molasses’ high sugar content
(Sari¢ et al., 2016).

Ash content has statistically significantly increased in treated
peach samples in comparison to the fresh peach, Table 2, also as
a result of osmotic dehydration stage of dehydration. Secondary
mass transfer of osmodehydration process (Filipovic¢ et al., 2014)
has incorporated, via solid gain, molasses high ash content (Sari¢
et al., 2016), in dry matter of dehydrated peach samples, increasing
it up to 21.43% in comparison to the untreated peach samples.

The changes of dehydrated peach samples' mineral matter con-
tent are much more profound than of the chemical content as can be
seen from Table 2. All four mineral matter content responses were
statistically significantly affected by all three osmodehydration pro-
cess parameters. The increase of time, concentration, and tempera-
ture had led to a statistically significant increase of K, Ca, Mg, and
Fe content in dehydrated (osmodehydrated and lyophilized) peach
samples. Maximal values of all peach samples’ mineral matter content
responses were obtained after 5-hr osmotic dehydration process in
molasses of maximal concentration (80%), at a maximal process tem-
perature of 50°C, and successive 5-hr lyophilization. Values were up
t08.63,248.30,64.05,and 101.56 times higher, in dehydrated thanin
fresh (untreated) peach samples, for K, Ca, Mg, and Fe, respectively.

This high increase of mineral matter content of dehydrated
peach samples can be attributed to the osmotic dehydration stage
of the process, especially to the secondary mass transfer, which
supplements dehydrating material with osmotic solutions’ (molas-
ses) dry matter components (Yadav & Singh, 2014). Molasses, as an
osmotic solution, besides its good technological effectiveness, pro-
vides enrichment of dehydrating material with its favorable nutritive
composition (Nicetin et al., 2017; Sari¢ et al., 2016), which can be
seen from the results of dehydrated peach samples mineral matter
composition.

The ANOVA calculation, presented in Table 3, showed that the
second-order polynom models for all responses were found to be
statistically significant and the response surfaces were fitted to
these models.

Osmodehydration process time had shown to be the most in-
fluential independent variable, then osmodehydration process tem-
perature and the least influential independent variable had shown to
be molasses’ concentration, on all tested responses, except for WL, .
In case of WL, the influential hierarchy was as follows: concentra-
tion, time, and temperature.

Linear terms of time, concentration, and temperature statisti-
cally significantly contributed to all tested responses models form-
ing, except for linear terms of temperature for WL, response.

The quadratic term of time was statistically significant for re-

sponses of DMC, a, anda_, ,while the quadratic term of temperature

wL?
was statistically significant for responses of WL, and all responses
of chemical and mineral content. For cross products, the statistically
significant terms were time x temperature for all responses of chem-
ical and mineral content, and concentration x temperature for DMC,

WL and a,, responses.
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The residual variance is also shown in Table 3, where the lack of
fit represents other contributions of higher order terms. A statisti-
cally significant lack of fit generally shows that the model failed to
represent the data in the experimental domain at which points were
not included in the regression (Madamba, 2002). In this research, all
second-order polynom models had an insignificant lack of fit tests,
which means that all the models represented the data satisfactorily.

The coefficient of determination, r?, is defined as the ratio of the
explained variation to the total variation. It is also the proportion
of the variability in the response variable that is accounted for by
the regression analysis. A high r? is indicative that the variation was
accounted for and that the data fitted satisfactorily to the proposed
model (Nicetin et al., 2017).

The r? values ranged from .856 (for WL,) to .979 (for DMQ),
showing good fit of experimental results to all calculated models.

Regression coefficients, presented in Table 4, can be used for
completing quadratic Equation (4), which describe mathematical
models of different peach dehydration responses. Solving these
equations with input values of independent variables (osmodehy-
dration process time, molasses’ concentration, and osmodehydra-
tion process temperature) values of desired responses (osmotic
dehydration and lyophilization processes responses, chemical and
mineral matter content) can be calculated. In that way, values of
investigated responses can be predicted in the ranges of values
of independent variables for which mathematical models were
developed.

From the presented results, it can be concluded that all three
osmotic dehydration parameters statistically significantly affected
DMC and a,, of successively dehydrated peach samples.

Osmodehydration process, as a pretreatment to lyophilization,
contributed to upgrading overall dehydration effectiveness, by in-
creasing obtained DMC values of successive dehydration process,
reducing time and energy consumption of high energy demanding
single-stage lyophilization process.

Exceptional peaches samples’ a, values reduction in lyophiliza-
tion stage contributed to the synergetic dehydration method with
samples’ microbiological stability, obtaining a dehydrated product of
only 0.433 of a, value.

The chemical content of dehydrated peach samples was pre-
served, while mineral matter content was highly increased, as a di-
rect consequence of molasses application, as an osmotic solution, in
the osmodehydration stage. In this manner new, nutritive improved,
microbiologically safe peach product is produced.

By applying response surface methodology, mathematical
models of 12 responses of osmotic dehydration and lyophilization
processes, chemical and mineral matter content of peach samples
were developed, where testing all developed models showed sta-
tistical significance. Mathematical models described the synergistic
performance of two successive dehydration methods in well man-
ner. Predicted and observed responses had good correlation, al-
lowing good prediction of values of investigated responses based
on the ranges of applied technological parameters, as independent
variables.
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