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Abstract The aim of the present study was to utilize
chemometric methods (the principal component analysis
and hierarchical cluster analysis) for monitoring the certain
aspects of flour mill streams quality and their interrelation to
selected rheological properties. Thirty-seven flour mill
streams were separated from industrial mill of 300 t/day
capacity. All flour streams were analyzed for ash, protein,
wet gluten, and damaged starch content and rheological prop-
erties as determined by Brabender Farinograph, Extensograph,
and Amylograph. The obtained results indicated that break,
sizing, and reduction flour streams exhibited different rheolog-
ical behavior in relation to a change in protein, wet gluten, ash,
and mechanically damaged starch content within the milling
passages. Rheological properties of dough during mixing and
kneading as well as during extension were different with regard
to the technological phase of milling from which they were
extracted. The obtained results could be utilized for selection of
certain flour streams in production of special-purpose flours.
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Introduction

The main objective of industrial flour milling is to extract
the maximum quantity of flour of desired quality. It is
accomplished by the successive grinding and sieving oper-
ations during which the gradual fragmentation of wheat
kernel occurs. Industrial wheat milling process comprises
three main stages: grinding within roller mills, sieving, and
purifying. The grinding stage comprises several phases—
passages where certain amount of flour is produced, removed
from the process and combined to provide final flour
(Pomeranz 1988; Kent and Evers 1994; Posner and Hibbs
1997; Owens 2001; Sugden and Osborne 2001). A compre-
hensive knowledge about the distribution of certain chemical,
biochemical, and rheological properties between mill streams is
an important issue for optimization of final product quality
(Ramseyer et al. 2011; Liu et al. 2011). Therefore, the determi-
nation of different aspects of quality of flour mill streams has
been the focus of attention of numerous authors—the content
and distribution of total protein and ash (Prabhasankar et al.
2000; Loza-Garay and Flores 2003; Okrajkova et al. 2007), wet
gluten (Poji¢ et al. 2004), lipids and fatty acids (Prabhasankar
and Haridas Rao 1999; Prabhasankar et al. 2000), enzymes
(Rani et al. 2001; Gebruers et al. 2002; Every et al. 2006a),
damaged starch (Sutton and Simmons 2006; Banu et al. 2010;
Poji¢ et al. 2012), pentosans (Wang et al. 2006a; Ramseyer et
al. 2011), and antioxidants (Engelsen and Hansen 2009).
Protein composition of different flour mill streams has also
been investigated (Menkovska et al. 2002; Sutton and
Simmons 2006; Wang et al. 2006b; Okrajkova et al. 2007,
Liu et al. 2011) as well as distribution of sulfur and free amino
acids (Liu et al. 2011). The diversity in protein composition of
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flour mill streams as well as the presence of variable amount of
certain kernel constituents influences the different rheological
properties of flour mill streams (Poji¢ et al. 2004; Banu et al.
2010; Liu et al. 2011). The data on the distribution of
certain constituents and functional properties between flour
mill streams could be utilized for the monitoring of the
efficiency of milling procedure, mill settings, and blending
of flour mill streams to obtain certain end-use quality that
meet specific customer demands (Prabhasankar et al. 2000;
Spasojevi¢ et al. 2000; Liu et al. 2011).

The implementation of more efficient tools for monitor-
ing, optimization, characterization, handling of raw mate-
rials, intermediate and final products, as well as for predic-
tion of quality throughout the whole production chain has
become a must for the modern food industry if it strives for
competitive position in the market. Throughout the produc-
tion process, a number of different measurements are
performed resulting in a large amount of data, used for one
specific purpose (Bro et al. 2002). However, by combining
all available information, the extraction of even more rele-
vant information from the collected data is possible by
application of multivariate statistics, mathematical model-
ing, and computing—all of them combined into a highly
multidisciplinary research discipline—chemometrics (Bro et
al. 2002; Gemperline 2006). It has become an irreplaceable
tool for exploratory analysis of large datasets, multivariate
quality assurance and quality control, detection of adultera-
tion, estimation of chemical, physical, and sensory proper-
ties of foods (Gemperline 2006). Despite the wide applica-
tion in food science, relevant literature is lacking in exam-
ples related to the use of chemometrics in studying the
quality characteristics of flour mill streams, with the excep-
tion of the study by Dornez et al. (2006) who utilized the
principal component analysis to study the distribution of
arabinoxylans, endoxylanases, and endoxylanase inhibitors
in industrial wheat roller mill streams. The application ex-
amples of chemometrics in the quality control of processed
food with spectroscopic data are numerous, and beyond the
scope of this study. Another example on the application of
chemometrics in the quality control of processed food in-
volved the utilization of chemometrics to study the influence
of commercial bread improvers on dough rheology and
hearth bread properties (Aamodt et al. 2003), the monitoring
of authenticity of Brazilian UHT milk (Souza et al. 2011),
the characterization of Brazilian lager and brown ale beers
(Granato et al. 2011), and the discrimination between low-
and full-fat yogurts (Cruz et al. 2013).

The objective of this study was to characterize the
flour mill streams in terms of their chemical and rheo-
logical properties and to assess the interdependence be-
tween them by using two chemometric techniques—
principal component analysis (PCA) and hierarchical
cluster analysis (HCA).

@ Springer

Materials and Methods
Samples

Thirty-seven wheat flour mill streams were obtained from a
commercial wheat flour mill (capacity 300 t/day): 8 break
mill streams (1B-1;, 1B-1,, 2B-1;, 2B-1,, 3B-I,, 3B-1,, 4B-1;,
and 4B-1,), 11 sizing mill streams (1R-I;, IR-I,, IR-II;, IR-
I, 1R-I1I;, 1R-III,, 2R-I;, 2R-I,, 2R-II;, 2R-II,, and 2R-
IIT), 17 reduction mill streams (1M-I, IM-II, 2M-1, 2M-II,
3M-I, 3M-II, 3M-III, 4M-1, 4M-II, 5M-I, SM-II, 6M, 7M,
8M, IM-I, OM-II, and 9M-III) and one bran duster flour
stream (Fs—Vs). The flour stream samples were collected in
accordance with the milling diagram during a fixed time
interval taking into account the succession of the milling
passages (Fig. 1).

Methods

The selected physicochemical properties of flour mill
streams were determined as follows: moisture content
according to ICC 109/1, protein content according to ICC
105/2, ash content according to ICC 104/1, and wet gluten
content according to ICC 106/2 (ICC 1996) and damaged
starch content according to AACC method 76-33.01
(AACC 2000). Selected rheological properties included
Brabender Farinograph water absorption and softening de-
gree determined according to ICC 115/1; Brabender
Extensograph energy, dough resistance, and extensibility
according to ICC 114/1; and Brabender Amylograph peak
viscosity ICC 126/1. All selected properties of flour streams
were analyzed in duplicate.

Data Analysis

A one-way analysis of variance (ANOVA) was used to test
the significant differences in chemical and rheological qual-
ity between flour mill streams. ANOVA was followed by
Fisher’s least significant difference test, where the differ-
ences between means at the 5 % level (p<0.05) were con-
sidered significant.

The subsequent data analysis included two pattern rec-
ognition methods, the PCA and HCA applied to the data for
each technological phase of milling—break, sizing, and
reduction. Therefore, three different matrices were formed:
8 rows (samples)* 11 columns (quality indicators) for break
phase, 11 rows (samples)x 11 columns (quality indicators)
for sizing phase, and 18 rows (samples)* 11 columns (qual-
ity indicators) for reduction phase (Cruz et al. 2013). PCA
and Pearson correlation coefficients () were used for find-
ing the relationships between selected quality properties of
flour mill streams. PCA was performed following the mean
centering, performed as a preprocessing method to equalize
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Fig. 1 A simplified mill flow
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the statistical importance of all the variables, with cross-
validation (Beebe et al. 1998; Aamodt et al. 2003; Granato
etal. 2011). HCA was performed following autoscaling as a
preprocessing step. Sample similarities were calculated on
the basis of the squared Euclidean distance, while the Ward
hierarchical agglomerative method was used to establish
clusters (Granato et al. 2011; Cruz et al. 2013). Statistical
analysis was carried out using the software XLSTAT, ver-
sion 2012.2.02 (Addinsoft, NY, USA).

Results and Discussion
Physicochemical Properties of Flour Mill Streams
Break Flour Mill Streams

The role of break system is to open the wheat kernel and to
gradually scrape the endosperm from the bran throughout
four break passages (1B, 2B, 3B, and 4B), which result in
stock with maximally possible large middlings and minimal
quantity of flour with minimal bran contamination. Certain
amount of flour is produced within the break stage either
due to releasing particles from fractured endosperm or par-
ticle attrition (Kent and Evers 1994; Posner and Hibbs 1997,
Catterall and Cauvain 2007). The ground stock from the first
two break passages are additionally classified on the two
grading systems (D1 and D2), where additional amount of
flour is separated (Fig. 1). This flour is not a result of
grinding, but extended sieving of stock from the preceding
breaking passages. Physicochemical properties of break
flour streams indicated a wide variation in their quality

4th, 5th, 6th, 7th, 8th and 9th
reductions

F---»>Middlings

4M, 5M, 6M, 7M, 8M, OM <

(Table 1). Protein content (P) of break flours gradually
increased over the successive break passages from 11.7 to
16.1 % dry matter (dm) being in accordance with the previ-
ously reported results (Prabhasankar et al. 2000; Rani et al.
2001; Dornez et al. 2006; Wang et al. 2007; Banu et al.
2010; Sakhare et al. 2012). The increase in protein content
of break flours is affected by the increase in the presence of
peripheral endosperm and bran particles rich in protein
(Wang et al. 2007). Wet gluten content followed the similar
trend as protein content and gradually increased over the
successive break passages from 31.3 % for 1B to 39.7 % for
3B. Ash content (A) of break flours varied between 0.44 and
0.75 % dm with noticeable increase from 2B to 4B due to
gradual roll gap decrease which resulted in release of aleu-
rone layer, fine bran, and germ particles along with the
endosperm particles (Sakhare and Inamdar 2011).
Although 1B flour often has the lowest ash content among
break flours, 1B flour was characterized by higher ash content
in relation to 2B flour stream, probably due to the release of
accumulated mineral dust from kernel crease (Sakhare and
Inamdar 2011). Damaged starch content showed an increasing
trend from 12.7 to 20.2 Ynit¢ Chopin Dubois (UCD) as the
grinding progressed from 1B to 4B showing the opposite
tendency observed by Banu et al. (2010).

Rheological properties of dough as determined by empir-
ical rheological tests such as Brabender Farinograph, and
Extensograph reflect the processing quality of flours and are
commonly used as a part of routine quality control within
the baking industry (Stojceska et al. 2007; Dapcevic
Hadnadev et al. 2011). The presence of different anatomic
parts of wheat kernel in break flours caused their different
rheological behavior (Hayta and Schofield 2004).
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extensibility exhibited the gradual increase from 163 mm for 1B
to 251 mm for 4B, while the Extensograph energy gradually
increased from 44 cm? for 1B to 126 cm? for 3B (Table 1). The
positive relationship between protein content and dough exten-
sibility along the first PC for patent flour was previously
reported by Aamodt et al. (2003). Fustier et al. (2009a, b)
reported the positive relation between protein content and the
Alveograph deformation energy, being the measure of exten-
sional work as Extensograph energy is. Dobraszczyk and
Salmanowicz (2008) reported close relation between protein
content and Kieffer maximum extensibility and area under
Kieffer force—distance curve. Kieffer dough extensibility rig
measures large deformation of dough in uniaxial extension
providing results that correspond to Extensograph results
(Dunnewind et al. 2004). Resistance to extension of break flour
streams was not related to measured chemical properties of
break flours and manifested no particular trend over the break
passages, being the lowest for 1B (170 BU) and highest for 2B
(290 BU; Table 1). Although Aamodt et al. (2003) reported
that resistance to extension was related to flour protein con-
tent along the first PC, it must be noted that the distribution
of the various protein groups occurs during milling process,
which is reflected in a corresponding variation of the rheo-
logical properties of flour streams (Wang et al. 2007). The
obtained results were also consistent with the results of
Dobraszczyk and Salmanowicz (2008) who reported no rela-
tion between protein content and Kieffer maximum force that
corresponds to the Extensograph resistance to extension. The
rheological properties of flour mill streams are also dependent
on the presence of glutathione, being impaired with the
increasing content of glutathione typical for the tail-end pas-
sages (Every et al. 2006b).

The peak viscosity of break flours as being located in
perpendicular directions along the PC1 axis appeared to be
independent of selected chemical parameters (Fig. 2b). The
peak viscosity values varied within narrow range 175-
225 BU, indicating that the viscosity was not a consequence
of mechanical damage of starch but of flour origin.

HCA was performed, primarily due to its ability to
reveal a natural groupings (or clusters) within a given data
set, in the form of a special graph—dendrogram. Thus, the
visualization of clusters and correlations among samples or
variables is enabled (Souza et al. 2011). Similar to PCA,
HCA revealed three distinct clusters of break flour mill
streams (Fig. 2c). Cluster 1 contained the initial break
flours (1B-I1 and 1B-12), being in accordance with the
sample grouping in the PCA score plot. The loading plot
indicated that their position was related to the highest
Farinograph softening degree. Cluster 2 contained flour
streams from second break passage (2B-I1 and 2B-12),
remained separated from other samples indicating that their
Extensograph resistance significantly differed from the
other break flours. Cluster 3 contained the terminal break

PC2 2599%)

PCl{E7.40%)

PC2(2599%)

VB

S 43 K3 ¢ 0I5 o8 U
PCl (67,40 %)

Dizsemitarity

Fig. 2 Break flour mill streams: PCA score plot (PC1 vs PC2) (a).
PCA loading plot (PC1 vs PC2) for physicochemical and rheological
properties (b). HCA dendrogram (c). P Protein content, 4 ash content,
WG wet gluten content, DS damaged starch content, WA Farinograph
water absorption, SD Farinograph softening degree, £ Extensograph
energy, Ex Extensograph extensibility, R Extensograph resistance to
extention, PV amylograph peak viscosity

flour streams (3B-I1, 3B-12, 4B-I1, and 4B-I12) which
appeared separated from each other in PCA score plot
due to significantly different values of the Extensograph
energy and extensibility, ash, and damaged starch content
(Fig. 2a and b, Table 1).
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possible. At this stage, bran and germ particles are flattened
which enable their separation during sieving. The reduction
flour mill streams were characterized by general gradual
increase in protein (from 10.5 to 17.8 % dm) and ash (from
0.35 to 2.52 % dm) content being the highest in the tail-end
reduction flours due to the increasing contamination of
millstreams with aleurone, bran, and germ particles
(Table 3). Prabhasankar et al. (2000) and Dornez et al.
(2006) observed no regular trend in protein content increase
from head-end to tail-end reduction passages, whereas
Gebruers et al. (2002) indicated a regular trend in protein
content increase for both break and reduction rolls. Dornez
et al. (2000) indicated that the increase in protein content
over reduction stage is not always obvious due to smaller
differences in protein content of reduction passages in rela-
tion to that of break passages. Wet gluten content gradually
increased from 18.0 % for 1 M to 30.5 % for 3 M. The
content of mechanically damaged starch increased from 9.7
to 29.6 UDC being the highest in the tail-end reduction
flours due to more severe grinding at tail-end reduction
passages (Table 3). By studying the microstructure of tail-
end flour streams from roller mill, Gangadharappa et al.
(2008) indicated the presence of deformed A-type (lenticu-
lar shaped) and intact B-type (spherical shaped) starch gran-
ules in the very tail-end flour stream, whereas preceding
flour stream contained slightly visible structural deforma-
tions of A type starch granules.

The qualitative differences within the reduction flours
could be visualized in the PCA score plot, where tail-end
reduction flours (6M-9M) were located to the left and
separated from head-end reduction flours (IM—5M) to the
right in the score plot (Fig. 4a). Bran duster flour stream
(Fs—Vs) appeared to be entirely distinct from tail-end reduc-
tion flours. In the corresponding loading plot (Fig. 4b),
79.55 % of the variability in the data was explained by the
first two PCs, where 62.51 % of the variability was
explained by PCl and 17.05 % by PC2. The increasing
content of peripheral endosperm in flour resulted in increas-
ing water absorption throughout the reduction system due to
their higher water-binding capacity (Banu et al. 2010). In
particular, the increase in water absorption was affected by
the increase in protein (#r=0.63), ash (»=0.58), and damaged
starch content (r=0.49). The increase in Farinograph soft-
ening degree was affected by increase in protein (»=0.70),
ash (7=0.66), and damaged starch content (»=0.54), show-
ing the opposite trend in comparison to the break mill-
streams. Morcover, the increased presence of peripheral
kernel particles rich in protein and minerals affected the
decrease in Extensograph energy (r=—0.75 and r=-0.76,
respectively) and resistance to extension (r=—0.84 and r=
—0.74, respectively) being in contradiction with break flour
mill streams. The opposite functional behavior between
break and reduction streams in terms of total flour protein

content was also observed by Wang et al. (2007) who
reported the positive correlation between loaf volume and
protein content of break streams, and negative correlation
between loaf volume and protein content of reduction
streams. The reason for diverse relation of certain

PC2 27,66 %)

PC2 27 .66%)

gFE 08 538 H s =8 £ E

PC1 (45,82 %)

5 % i ) ] 1] (1] az

Dissimilarity

Fig. 3 Sizing flour mill streams: PCA score plot (PC1 vs PC2) (a).
PCA loading plot (PC1 vs PC2) for physicochemical and rheological
(b). HCA dendrogram (c). P Protein content, 4 ash content, WG wet
gluten content, DS damaged starch content, WA Farinograph water
absorption, SD Farinograph softening degree, E Extensograph energy,
Ex Extensograph extensibility, R Extensograph resistance to extention,
PV amylograph peak viscosity
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Table 3 Selected physicochemical and rheological properties of reduction flour streams

Passage P WG A WA SD E R Ex

% dm % % dm % BU cm? BU mm
IM-I 10.84+0.12 t,u,v  23.1£0.34 s,t 0.35+£0.01 n 58.1=0.15 j,k 63+2.9 h,i,j 66+3.2 j,k 302+2.9d 131+2.0
IM-II 10.5+£0.01 w,x 22.7+0.02 tu 0.38+0.02 m 58.54+0.21 j 78429 e f,g 57+3.5 m,n 303+2.9d 124+2.5
2M-1 11.2+0.03 qr 254+0.32 p 0.38+0.00 m 60.7+0.41 h,i 90+0.0 d,e 54+0.6 n 273153 f 130+3.8
2M-11 10.9+0.03 s,t,u 24.1+0.24 q 0.38+0.00 m 59.0+0.35 j 75+5.0 f,g,h 59+£0.2 L m,n  290+10.0 d,e 127+2.1
3M-1 11.8+£0.06 n 27.6+0.12 k.1 0.40+0.00 m 62.5+0.32 f,g 70+0.0 g,h,i 71£0.5 i,j 2524104 g,h 152+1.5
3M-II 11.5+0.05 o,p 28.9+0.16j 0.45+0.01 1 62.7+0.25 f,g 62+2.9 i,j,k 69+0.9 j 333+11.5¢ 130+3.0
3M-III 11.0£0.08 1 22.240.19 u 0.50+£0.01 j,k  65.0£0.32d,e  78+£29e,(f,g 44+£1.5 0,p 257104 g 118+2.5
4M-1 13.3£0.02 r,s,t 26.3£0.23 o 0.51+0.01 j 62.0£0.23 gh  68+2.9 gh,i 63+2.1 k,1 220+£5.0 j 160+2.5
4M-1T 13.1+0.11 i, 26.4+0.42 o 0.49+0.01 j,k  59.5+£0.41 i, 73+2.9 f,g,h 66+1.2 j,k 240+5.0 h,i 158+2.5
SM-I 12.2+0.05 m 23.5+0.18 1,8 0.48+0.02 k 63.6+0.31 e,f 85+5.0 ef 56+3.0n 252+5.8 g,h 134+3.6
SM-IL 13.0+0.07 j,k 23.5+0.10 1,8 0.63£0.01 h 65.6+0.15 d 100+5.0 d 39+1.5p 2174153 j 122423
6M 14.3+£0.04 g 23.9+0.32 q.r 0.89+0.01 e 69.0+£0.35 ¢ 118+2.9 ¢ 26+2.1 q 163£11.5 m 117+£2.1
™ 16.1+£.03 d 27.5+£0.26 k,I,m 1.354£0.01 d 68.6+£0.15 ¢ 1234£2.9 b,c 2343.0 q 112429 n 148+2.1
8 M 14.840.04 27.84+0.52 k 1.39+0.01 ¢ 70.5£0.25 b 13242.9 a,b,c 16+0.6 r 123+11.5n 90+1.51
9 M-I 17.8+£0.05 a 18.0+£0.50 w 2.52+0.02 a 72.0+0.29 a 130£2.9 a,b,c  n/a n/a n/a
9 M-I 17.3£0.05 b 19.14+0.60 v 2.09+£0.01 b 71.5+0.25 a,b 140+£5.0 a n/a n/a n/a
9 M-III 16.7+0.12 ¢ 18.5+£0.62 w 2.07+£0.01 b 58.84+0.25 j 80+0.0 e,fig n/a n/a n/a
Fs-Vs 13.44+0.03 h 30.5+0.30 h 0.79+0.01 f 71.0£0.49 a,b 135+5.0 a,b 56+1.5n 183+5.8 k,1 175+2.6

Mean value=standard deviation. Figures followed by the same letter within the same column are not significantly different (p<0.05)

P protein content, WG wet gluten content, 4 ash content, WA Farinograph water absorption, SD Farinograph softening degree, E Extensograph energy, R

extensibility, PV peak viscosity, DS damaged starch



AUTHOR'S PROOF

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

Food Bioprocess Technol

JmlID 11947_ArtID 1133_Proof# 1 - 22/05/2013

rheological properties of dough of break and reduction
millstreams might be associated with different distribution
of protein fractions among them (Figs. 2b and 4b; Liu et al.
2011). Namely, the different rheological behavior of break
and reduction flour streams could be explained by higher
ratio of polymeric to monomeric proteins of break than of
reduction streams (Wang et al. 2007). Break passages espe-
cially head-end passages release relatively pure endosperm
particles, while tail-end milling passages tend to scrape off
residual endosperm particles from peripheral layer of kernel,
together with fine bran and germ particles (Sakhare et al.
2012). Resistance to extension was negatively correlated
with damaged starch content. Jovanovich et al. (2003) indi-
cated that the positive relation between Alveograph dough
tenacity and damaged starch content regardless of the dif-
ferences in wheat and milling fractions. When performing
Alveograph test, which is conducted with constant moisture
content of dough, flour containing higher damaged starch
content would not be completely hydrated resulting in
higher dough tenacity. The increased presence of peripheral
kernel particles rich in protein, minerals, and amylolytic
enzymes affected the decrease in Amylograph peak viscos-
ity (r=—0.79 and r=—0.78, respectively). The fact that «-
amylase is mostly located in the peripheral parts of a wheat
kernel indicated similar distribution of c-amylase and ash
content among flour mill streams, where tail-end flours were
characterized by higher a-amylase activity (Rani et al. 2001;
Every et al. 2002; Dornez et al. 2006). More intense shear
stresses imposed on starch granules during reduction stage
induced the stronger mechanical damage of starch granules
than during break stage. Since the recorded peak viscosity is
an indirect measure of the present c-amylase status along
with the starch granule quality, the higher a-amylase activ-
ity and higher quantity of mechanically damaged starch in
the tail-end reduction passages resulted in lower peak vis-
cosity (Fustier et al. 2009a, b).

HCA revealed three distinct clusters of reduction flour
mill streams (Fig. 4c). Cluster 1 contained the flour streams
from head-end reduction passages (1M-I, IM-II, 2M-I, 2M-
11, 3M-1, 3M-II, 3M-11I, 4M-1, 4M-I1, and 5M-I) located to
the left side in the corresponding PCA score plot due to the
differences in Alveograph peak viscosity, Extensograph re-
sistance and energy between this group and the remaining
group of reduction flours. Cluster 2 included 5SM-II, 6M,
7™M, 8M, and Fs—Vs flours, while cluster 3 comprised the
terminal reduction flour streams (9M-1, 9M-II, and IM-III).
The corresponding loading plot indicated that the position of
these terminal reduction flours was related to their high
protein and ash content (Fig. 4a and b).

The noticeable differences in the rheological behavior of
break, sizing, and reduction flours could be generally attrib-
uted to the presence of different proportion of various ana-
tomic part of a wheat kernel in them (Wang et al. 2007; Fustier

et al. 2009a, b). In particular, flour streams differ in protein
concentration and its molecular composition—amount and
size distribution of polymeric and monomeric proteins,
amount of free thiol groups, and amount of disulfide linkings
(Menkovska et al. 2002; Sutton and Simmons 2006;
Okrajkova et al. 2007; Wang et al. 2007). Moreover, the

a

® Fuis

17.05%)
-
i

4 - -3 =

R

FC2 (17,05%)

-2 47 4 435 ¢ c3s 0s e

PCL[62,51%)

c
T
2
UV
shia
By ———
paa |
[T i
s+ I
FITEI 8
o ]
i .f
At |
-2
£kt I‘I_ ‘
ey = i
[ 1
ha M
L] Q " & ® ® ® = ¥
Dissimitarity

Fig. 4 Reduction flour mill streams: PCA score plot (PC1 vs PC2) (a).
PCA loading plot (PC1 vs PC2) for physicochemical and rheological
properties (b). HCA dendrogram (¢). P Protein content, 4 ash content,
WG wet gluten content, DS damaged starch content, WA Farinograph
water absorption, SD Farinograph softening degree, £ Extensograph
energy, Ex Extensograph extensibility, R Extensograph resistance to
extention, PV amylograph peak viscosity

@ Springer

494
495
496
497
498
499



Q4

AUTHORSPROOGF> "

Food Bioprocess Technol

variable distribution of lipids, fatty acids, enzymes (o-amy-
lase, protease, lipoxygenase, polyphenol oxidase, peroxidase),
and mechanically damaged starch granules within the flour
mill streams also contribute to the variable rheological behav-
ior of flour mill streams (Prabhasankar and Rao 1999;
Prabhasankar et al. 2000; Rani et al. 2001; Di Stasio et al.
2007). The different rheological behavior of flour streams
could be associated to different sulfur content between break
and reduction flour streams, being the higher for break flours
as indicated by Liu et al. (2011). Higher sulfur content is
associated with the increase in the proportion of LMW sub-
units of glutenin and increased dough extensibility and de-
creased dough elasticity thereof (Zhao et al. 1999; Liu et al.
2011). Liu et al. (2011) indicated that sulfur content of flour
mill streams supplemented with ash content appeared to be
useful to evaluate their quality due to significant correlations
with bread loaf volume, Farinograph peak time, and
Extensograph parameters. Better rheological properties and
higher gluten strength of break flours in comparison to those
of reduction flours could be explained by lower degree of
disulfide cross-linkings and higher amount of albumins and
globulins mainly located in the peripheral parts of wheat
kernel (Okrajkova et al. 2007; Wang et al. 2007). Every et
al. (2006a) reported higher concentration of enzyme peroxi-
dase in the break flours, which oxidizes and cross-links ferulic
acid residues on arabinoxylan and produces a secondary pen-
tosan network through the gluten network that improves rhe-
ological properties of dough made from break flours. More
apparent variability in rheological properties of break flours in
comparison to those of reduction flour could be attributed to
the amount of gliadin, sodium dodecyl sulfate, (SDS)-soluble
glutenin, and SDS-insoluble glutenin that changed markedly
within the breaking stage in contrast to reduction stage (Sutton
and Simmons 2006). Sutton and Simmons (2006) also found
that tailing passages exposed to more intensive grinding and
consequently more intensive molecular disruption, character-
ized by higher thiol content (Sutton and Simmons 2006) and
higher damaged starch content (Jovanovich et al. 2003;
Gangadharappa et al. 2008) affecting certain rheological and
processing quality properties.

Conclusion

Flour mill streams from consecutive milling passages largely
differ in composition, rheological properties, and hence in
overall technological functionality. The selected chemometric
techniques, the principal component analysis, and the hierar-
chical cluster analysis could be effectively used for the visu-
alizations of the performance of milling procedure by mon-
itoring the different aspects of flour mill streams quality and
their interdependency. Break, sizing, and reduction flour
streams exhibited different rheological behavior in relation

@ Springer

to a change in protein, wet gluten, ash, and mechanically
damaged starch content within the milling process.
Rheological properties of dough made of flour streams
recorded during mixing and kneading were different with
regard to the technological phase of milling from which
they were extracted. Softening degree of break flours was
not related to measured chemical properties, while that of
sizing and reduction flours was negatively correlated with
wet gluten content and positively correlated with protein, ash,
and damaged starch content, respectively. Moreover, the ex-
tensional properties of dough made of flour streams were
dependent on the phase of milling from which they were
extracted so that extensibility and energy was positively cor-
related with protein and wet gluten content of break and sizing
flours. Energy and resistance to extension of dough made
from reduction flours was negatively correlated with protein
and ash content. Pasting properties of sizing and reduction
flour streams were negatively correlated with ash and mechan-
ically damaged starch content, while such dependence was not
observed for break flours.

Although the results in this study were obtained by
milling certain wheat within one milling diagram, it might
be expected that the interrelation between certain aspects of
flour millstream quality could be also applicable in the
processing of wheat of different quality and/or using differ-
ent milling diagram. Hence, the selection of certain flour
streams for production of special-purpose flours, as well as
the selection of appropriate flours for specific bakery prod-
ucts could be enabled.
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