




ABSTRACT: 

The selection of the most promising anticancer compounds from the pool of the huge number of 

synthesized molecules is a quite complex task. There are many compounds characterization 

approaches which can suggest the best structural features of a molecule with the highest 

antiproliferative effect on the certain type of cancer cell lines. One of these approaches is the 

lipophilicity determination of compounds and the analysis of its correlation with the anticancer 

activity. Since the importance of the lipophilicity is underlined in many earlier studies, this study is 

-picolyl and 17(E)-

picolinylidene androstane derivatives by using reversed-phase high performance liquid 

chromatography (RP-HPLC) as a very fast, effective and relatively cheap method. Determination of 

the chromatographic lipophilicity of the studied androstanes can be considered as the part of their 

physicochemical characterization, which is a very important step in their further selection as drug 

candidates. The present study does not neglect the in silico approach. The determined 

chromatographic lipophilicity was analyzed by quantitative structure-retention relationship (QSRR) 

approach in order to reveal which molecular characteristics contribute mostly to the typical behavior 

of the androstanes in the applied chromatographic system, and thus to their lipophilicity. Classical 

statistical approach and Sum of Ranking Differences method were used for selection of the best 

QSRR models which should be used in prediction of chromatographic lipophilicity of studied 

androstane derivatives.   
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Abbreviations: 

ADME  Absorption, Distribution, Metabolism, Excretion 

ANN  Artificial Neural Networks 

AR-  Androgen Receptor negative 

BP  Boiling Point 

CP  Critical Pressure 

CRRN  Comparison of Ranks by Random Numbers 

CT  Critical Temperature 

DE  Dreiding Energy 

EP  Electrostatic potential surface 

GSA  Global Sensitivity Analysis 

HCA  Hierarchical Cluster Analysis 

HILI  Hydrophilic-lipophilic surface 

HOMO  Highest Occupied Molecular Orbital 

HPLC  High Performance Liquid Chromatography 

LOO  Leave-One-Out 

LR  Linear Regression 

LUMO  Lowest Unoccupied Molecular Orbital 

LV  Latent Variables 

MLR  Multiple Linear Regression 

MP  Melting Point  

PCA  Principal Component Analysis 

PCR  Principal Component Regression 

PLS  Partial Least Squares 

PR  Polynomial Regression 

PRESS  Predicted Residual Sum of Squares 

PSA  Polar Surface Area 

QSAR  Quantitative Structure Activity Relationship 

QSRR  Quantitative Structure Retention Relationship 

RMSE  Root Mean Square Error 

SASA  Solvent Accessible Surface Area 

SRD  Sum of Ranking Differences 

SS  Stepwise Selection 

TSS  Total Sum of Squares 

vdWSA  van der Waals Surface Area 

VIF  Variance Inflation Factor 

VIP  Variance Importance in Projection 

WWR  Wald-Wolfowitz runs test 
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1. INTRODUCTION 

 

Cancer, as one of still growing health problems in the World, is for decades in the focus of many 

medical, chemical and interdisciplinary studies [1-5]. A number of compounds, which were assumed 

to have anticancer activity, have been synthesized by organic chemists, mostly based on trial-and-error 

approach. However, lots of them have been rejected not only on the basis of their negligible 

antiproliferative activity, but also due to mutagenic and/or teratogenic effect. In this context, it is 

necessary to highlight that this approach can be time-consuming and in many cases unavailing [6].  

The first step in the drug selection candidates is certainly crucial for further drug development. In the 

last two decades the computational modeling and chemometrics (particularly quantitative structure-

activity relationship  QSAR approach) have become one of the essential components in the first stage 

of drug selection candidates [7]. They can give significant guidelines for the synthesis of new 

compounds with desired biological activity or predict the biological activity of already synthesized 

compounds. 

In often too long drug discovery process every information about physicochemical properties of 

potential drug candidates is precious. Besides the computational characterization, the experimental 

analysis of certain physicochemical parameters is still needed.  

Lipophilicity (often expressed as logP parameter) is one of the most analyzed physicochemical 

parameters of small biologically active compounds [8]. It is generally related to the ability of a 

compound to achieve its site of action in a biological system by passing through the lipophilic cell 

membranes. The determination of the lipophilicity of small molecules can be achieved experimentally 

and by computational techniques. Nowadays, the computational approach is often used than the 

classical experimental methods, such as shake-flask method, potentiometric titrations, filter-probe 

method, etc [9,10]. Chromatographic techniques have become a very popular experimental method for 

the lipophilicity determination (so-called chromatographic lipophilicity) [11-13]. Chromatographic 

lipophilicity is often in a very good relation with the computational lipophilicity [14,15]. Reversed-

phase high performance liquid chromatography (RP-HPLC) with C18 stationary phase and strictly 

controlled chromatographic conditions is one of the most reliable experimental techniques for 

lipophilicity determination of steroidal compounds [16]. RP-HPLC, as a very fast, effective and 

relatively cheap method, has been applied for determination of the lipophilicity of many compounds 

[17,18]. The determined chromatographic lipophilicity was further used in quantitative structure-

retention relationship (QSRR) studies aimed to correlate the molecular features with the retention 

behavior in the applied chromatographic system. Particularly, the basics and importance of QSRR 

analysis was pointed out in review papers by Héberger [19] and Kaliszan [20].  
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The present study is focused on the RP-HPLC determination of lipophilicity of earlier synthesized 

-picolyl and 17(E)-picolinylidene androstane derivatives, computational modeling of their 

structures and a comprehensive QSRR analysis. These derivatives express significant antiproliferative 

activity toward androgen-receptor negative (AR-) prostate cancer cells, PC-3 [21-23], and this study 

can be considered as the contribution to their physicochemical characterization and to selection of 

androstanes with the most prominent anticancer activity, which should be forwarded to the more 

detailed in vivo biological examinations as potential anticancer medicines.  

 

2. MATERIAL AND METHODS 

2.1. Studied compounds and computational modeling 

The analyzed series of eleven -picolyl and thirteen 17(E)-picolinylidene androstane derivatives 

have been synthesized according to the procedures described earlier [21-23]. The determination of 

their structures can be found in literature [21-23]. The 2D molecular structures of the androstane 

derivatives are given in Table 1. The compounds contain different substituents in positions 3, 4, 5 and 

6, such as hydroxyl, acetoxy, epoxy, oxo, nitro and meth -

picolyl and 17(E)-picolinylidene groups which are connected to D ring of steroidal core, strongly 

affect the total lipophilicity. -picolyl and thirteen 17(E)-picolinylidene androstane 

derivatives have shown significant in vitro antiproliferative activity toward prostate cancer, breast 

cancer and colon cancer, they have become an interesting basis of further development of androstane-

based anticancer drugs [21-23].  

Computational modeling of the structures of studied androstanes was carried out by using the suitable 

software for molecular design. 2D and 3D structures were drawn by using ChemBioDraw v. 14 and 

ChemBio3D v. 14 programs [24]. 3D structures were energetically minimized applying molecular 

mechanics force field method (MM2), and the cutoff for structure optimization was set at a gradient of 

0.0001 kcal/Åmol. Modeling of hydrophilic-lipophilic surfaces and surface of electrostatic potential 

was done by Bioluminate® program [25]. Highest occupied molecular orbitals (HOMO) and lowest 

unoccupied molecular orbitals (LUMO) and some physicochemical and topological descriptors were 

modeled by ChemBio3D v. 14 program.  The other programs used for the calculation of molecular 

descriptors are the following: PreAMDET [26 27], ALOGPS 

2.1. [28], Avogadro 1.0 [29], ADRIANA.Code [30], Marvin Sketch 6.1 [31] and Parameter Client 

Program [32]. The number of molecular descriptors (physicochemical, topological, lipophilicity and 

absorption, distribution, metabolism and excretion  ADME) which were used in the analysis is 143. 

The list of molecular descriptors is given in Supplementary data (Table S1). 
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2.2. Chromatographic analysis 

Prior to chromatographic analysis, the samples of the analyzed androstanes were diluted in methanol 

(BAKER HPLC Analyzed® HPLC gradient grade) in the concentration of 2 mg/ml. The prepared 

solutions were afterwards filtered by Captiva Econofilter (nylon membrane, 25 mm diameter, 0.45 µm 

pore size, 1000/pk). Isocratic chromatographic analysis was carried out applying RP-HPLC system 

(Agilent Technologies 1200 Series HPLC) with ZORBAX Eclipse XDB-C18 column (4.6 x 50 mm, 

1.8 micron) and Diode Array Detector (DAD) and Evaporative Light Scattering Detector (ELSD). 

Two mobile phases were used, consisting of methanol and water mixtures in the ratio of 70 : 30 and 90 

: 10 with the flow rate of 0.600 ml/min. The pH of mobile phases was maintained on 7 by 0.01 M 

phosphate buffer (Na2HPO4, KH2PO4, Lach-Ner, p.a.). The column temperature was 25 °C. Injection 

volume was set at 10 µL. The detection of the compounds was done by DAD detector on 210 and 230 

nm. The temperature and pressure of ELSD detector were 40 °C and 4.5 bar, respectively. The 

retention of the compounds was measured in triplicate. The signal from ELSD detector was the control 

detection signal. The capacity factor (k) was calculated by the following equation: 

k = (ta  tm) / tm                 (1) 

ta  retention time of a compound (detection on 210 nm, DAD), tm  dead time (the first disturbance on 

the chromatogram) 

In the present study, the chromatographic lipophilicity of the analyzed androstane derivatives was 

defined as logk. The extrapolation of the retention factor to pure water or buffer was not done, since 

-

picolyl and 17(E)-picolinylidene androstane derivatives could not be measured in pure water (buffer), 

therefore the parameter logkW (capacity factor defined in pure water as a mobile phase, theoretically) 

would not have the physical meaning. Hence, this paper favors logk value as the measure of 

-picolyl and thirteen 17(E)-picolinylidene androstane derivatives instead of logkW 

value because of practical reasons.  

 

2.3. Chemometric tools 

QSRR analysis took into account several chemometric methods. In the first step, classification or 

pattern recognition methods was used: hierarchical cluster analysis (HCA) and principal component 

analysis (PCA) in order to reveal similarities or dissimilarities among the molecules. In the next step, 

the selection of molecular descriptors, which are the most suitable for regression analysis, was 

achieved by stepwise selection (SS) procedure. Afterwards, the regression analysis was carried out by 

using different regression methods: linear regression (LR), polynomial regression (PR), multiple linear 

regression (MLR), principal component regression (PCR), partial least squares regression (PLS) and 
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artificial neural networks regression (ANN). The obtained QSRR models were evaluated by internal 

and external validation, including cross-validation procedure. Ultimately, the QSRR models were 

ranked by Sum of Ranking Differences (SRD) approach introduced by Heberger and Kollar-Hunek 

[33]. 

HCA is a very useful method for detection of clusters of similar objects. It put the objects which are 

close together in the variable space in the same cluster. The distance among the objects is usually 

defined by Euclidian distances [34]. PCA has certain advantage over the HCA, since it can show 

which trait the object share in the variable space. PCA actually reduces the amount of data when there 

is correlation present among the variables. Principal components (PCs) are linear combinations of 

original variables [35]. QSRR procedure usually starts with the simple LR and/or PR analysis. If there 

are no high-quality or at least acceptable LR and PR models, it is necessary to apply multivariate 

regression approaches. MLR is suitable when there is no correlation present among the predictor 

variables. However, the multicollinearity is desirable in PCR and PLS modeling. Despite the 

limitations of MLR, it can be very suitable for explanation of certain chromatographic phenomena and 

it is usually used in QSRR analysis [36]. PCR is used when there can be detected a considerable 

degree of correlation between the independent variables [34,37]. The PCs in PCR are selected so they 

can describe as much of the variation in the independent variables as possible. However, in PLS, 

which has similar principle as PCR, the extra weight is given to the variables that are highly correlated 

with the response variable [34]. Both, PCR and PLS can be used only if a significant number of 

independent variables exists. The non-linear approach, which implies the ANN modeling, is very 

useful when the complex relationships between the variables exist. ANN method has become a very 

useful tool in modern QSRR analysis. Sometimes, ANNs are the best and the only solution for the 

precise prediction of the retention times (tr) or chromatographic lipophilicity (logk) of analytes in 

certain chromatographic system [36,38,39].   

SRD analysis, as one of relatively new models evaluation approaches, can give an insight into 

consistency of QSRR and QSAR models. It is entirely general and simple procedure and can be used 

together with classical comparison of statistical parameters in evaluation of QSRR and QSAR models 

[40-42]. The SRD method measures the distance of a model or an object from the defined reference 

applied in order to reveal the grouping of similar objects or models as well.  

The software used for chemometric calculations in this study is the following: NCSS 2007 [43] (for SS 

and MLR), MATLAB R2013a with PLS_Toolbox [44] (for PCA, PCR and PLS modeling), Statistica 

v. 10 [45] (for ANN modeling) and Microsoft Excel 2013 [46].  

Since detailed explanation of basics of the chemometric methods used in this study would require too 

much space and  it is omitted from the 
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manuscript. Therefore, the reading of the additional literature is strongly suggested [34-39], 

particularly for those who are not familiar with chemometric methods and QSRR methodology.
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3. RESULTS AND DISCUSSION 

3.1. Chromatographic lipophilicity of androstane derivatives 

Chromatographic lipophilicity analysis by RP chromatography is based on the assumption that non-

polar compounds express high affinity toward non-polar stationary phase and therefore have high 

retention in the system than polar compounds. Modifications in the structural core that increase the 

polarity of a molecule lead to more intensive interactions between a molecule and components of 

mobile phase. In this study, the analyzed compounds have low or moderate polarity, while more polar 

component in the mobile phase is water and methanol was used as a modifier. The results of 

chromatographic analysis are given in Supplementary data (Table S2). The experimentally obtained 

capacity factors (k) of studied androstanes are given in Figure 1, which indicates the higher retention 

in the system with the mobile phase which contains higher amount of water. Also, it can be seen that 

the compounds of 17(E)-picolinylidene group have higher retention than -picolyl 

group. This leads to the conclusion that the picolinylidene function makes a molecule more non-polar 

than the picolyl group. 

In -picolyl group the compound 10 has the highest retention in the applied chromatographic 

system. In 17(E)-picolinylidene group the highest retention expresses the compound 24. The mutual 

characteristics of these compounds is the absence of substituents in A and B rings and double bonds in 

position 3 and 5. The compound 10 however exhibits weaker affinity toward C-18 stationary phase 

than the compound 24 In Figure 1 it also can be 

observed that the compounds 2, 7, 12, 18 and 21 are significantly retained in the system having low 

polarity. These compounds have acetoxy group in position 3. Despite the fact that compound 17 also 

has acetoxy group in the position 3, it has smaller retention than the aforementioned compounds. The 

reason for this is very polar nitro group in position 4 in compound 17. The compounds 5, 11, 9, 8, 23, 

22 and 16 have relatively small retention since they have a number of polar functional groups in their 

structure.  

The influence of particular substituent or functional group on chromatographic lipophilicity can be 

determined in the case of pairs of compounds whose structures differ only in the presence of that 

substituent or functional group. This influence can be des k factor which is the difference 

between the capacity factor of a compound with specific substituent or functional group and a 

compound without it (Table 2). If the hydroxy group in position 3 of androstane core is substituted by 

acetoxy group, as in the case of pair of compounds 1 and 2, 6 and 7, 12 and 13, the lipophilicity would 

significantly increase. The introduction of N-oxide function decreases the lipophilicity (pairs of 

compounds 14 and 16, 12 and 18), while more effective decrease in the lipophilicity is achieved by 

introduction of nitro group in position 4 (pair of compounds 21 and 17). Methoxy group in position 4 

leads to the slight increase of lipophilicity (pair of compounds 14 and 19). The shift of the double 
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bonds position from position 5 into position 4 induce the decrease of lipophilicity (pairs of compounds 

1 and 6, 12 and 21, 13 and 20). The exception is the pair of compounds 2 and 7. It must be emphasized 

that inductive and resonance effects can affect total lipophilicity of a compound. This can explain the 

effect of the position of double bonds in androstane core on total lipophilicity. Generally, the 17(E)-

picolinylidene group have higher lipophilicity than the compounds which belong to the -picolyl 

group. This is obvious if we compare the compounds that only differ in these type of substituents (pair 

of compounds 10 and 24, 1 and 13, 2 and 12, 8 and 22, 4 and 15, 3 and 14), and since they have a 

-position. 

The correlation between the k obtained by using mobile phase with volume fraction of methanol = 

0.90 and the k obtained with mobile phase with = 0.70 is described by correlation coefficinet (R) of 

0.9725. It indicates a good concurrence between retention factors (lipophilicity) determined by using 

two different mobile phases. 

In the next step of analysis, the chromatographic data were processed by Wald-Wolfowitz runs 

-picolyl group and 17(E)-picolinylidene group differ 

significantly in chromatographic lipophilicity. According to the results of WWR test (Supplementary 

data, Table S3), these two groups differ only in mobile phase with = 0.70. Therefore, k0.70 factor can 

be used as discrimination factor of these two groups. 

  

3.2. Computational lipophilicity of androstane derivatives 

The 3D structures of studied androstanes were analyzed experimentally by X-ray crystallography and 

nuclear magnetic resonance [47]. The computational modeling of 3D structures was carried out so the 

modeled compounds are in agreement with experimentally predicted ones. The lipophilicity 

descriptors (logP, logD and logS) are obtained on the basis of 2D and 3D structures. LogP describes 

the distribution of a neutral compound between water and n-octanol layer, while logD takes into 

account ionic forms. LogS is solubility of a compound in water. According to the logP values, the 

analyzed androstane derivatives can be considered as lipophilic (logP > 1).  

In order to visualize molecular characteristics which can affect total lipophilicity of a compound, 

Poisson-Boltzmann electrostatic potential (EP) surface, hydrophilic-lipophilic (HILI) surfaces and 

HOMO-LUMO orbitals were projected. In Figure 2 these characteristics were shown for compound 1, 

and for other compounds are given in Supplementary data (Table S4). The Poisson-Boltzmann maps 

of electrostatic potential can give an insight into possible association of molecules and their polarity. 

The electronic effects can be quantified by the analysis of HOMO and LUMO orbitals. HOMO energy 

(EHOMO -

energy (ELUMO) is a measure of interactions based on electron transfer and H-bond formation effects. 
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The difference between ELUMO and EHOMO energy is so-called energy gap (EGAP). EGAP is an indicator of 

molecular stability (reactivity). 

Observing the electrostatic potential maps of androstane derivatives, it can be seen that polar centers 

are located on N atom of the pyridine ring and around the introduced hydroxy, methoxy, acetoxy, 

nitro, oxo and epoxy groups, including the location of double bonds -electrons). According to the 

EGAP measure, the compound 5 is chemically most stable (EGAP = 12.9150 eV), while the compounds 8 

and 22 have the lowest stability with the energy gap of 0.8770 eV and 0.4650 eV, respectively. The 

modeling of hydrophilic-lipophilic surfaces showed that majority of the analyzed androstanes has 

strongly non-polar or lipophilic character (lipophilic surface is significantly larger than hydrophilic in 

the majority of analyzed androstanes), which is in agreement with the calculated logP values. 

Hydrophilic surface marks the parts of a molecule which form dipole dipole interactions with the 

components of mobile phase (methanol and water). HILI surfaces indicate the parts of the molecules 

of the analyzed androstanes which should be changed in order to increase or decrease their 

lipophilicity. Van der Waals interactions exhibit between the polar parts of a compound and C-18 

stationary phase. It must be emphasized that residual non-modified silanol groups can affect the 

determination of chromatographic lipophilicity of compounds, despite the fact that hydrophobic 

surface of C-18 chains is much larger than the hydrophilic surface of residual silanol groups (Figure 

3). Therefore, it is useful to examine the correlation between the experimentally obtained lipophilicity 

(k or logk) and computational lipophilicity (logP). This step is usually considered as the first step of 

QSRR analysis. It is aimed to confirm the concurrence between the experimental and computational 

lipophilicity.  

 

3.3. Molecular features affecting the chromatographic lipophilicity of androstane derivatives  

QSRR approach 

The relationship between the experimental lipophilicity (logk0.90 and logk0.70) and computational 

lipophilicity (Average logP) was examined in the first step of QSRR analysis. Average logP was 

calculated on the basis of all calculated logP parameters (ALOGPs, AClogP, ALOGP, KOWWIN, 

etc.). The obtained models can be seen in Figure 4. These quite good correlations confirm the 

assumption that the chromatographic factors (logk0.90 and logk0.70) can be considered as lipophilicity 

parameters of the analyzed -picolyl and 17(E)-picolinylidene androstane derivatives. 

The QSRR analysis started from the simples models, such as LR and PR, but followed by more 

complex approaches as MLR, PCR, PLS and ANN regressions. All these models were validated by 

internal and external validation procedures. Prior to QSRR analysis, the set of compounds was divided 

into training set and external test set (compounds 2, 6, 12, 19 and 23), except in ANN modeling where 

the additional test set is required. The statistical parameters used as indicators of the quality of QSRR 
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models in this study are the following: and determination coefficients (R, R2), 

adjusted determination coefficient (R2
adj), leave-one-out (LOO) cross-validation determination 

coefficient (R2
cv), F), p-value, root mean square error (RMSE), total sum of squares 

(TSS), predicted residuals sum of squares (PRESS), PRESS/TSS ratio, standard deviation of cross-

validation (SDPRESS), RMSE and correlation coefficient of the test set (RMSEtest, Rtest respectively). 

PCR and PLS models were characterized by cumulative fraction of sum of squares of all the Ys 

explained by the component (R2Ycumul) and cumulative fraction of the total variation of the Ys that can 

be predicted by the component (Q2Ycumul). In ANN modeling, the additional test set must be used to 

determine generalization error, while validation set is used to find the best ANN configuration and 

training parameters by comparing validation set error and training set error during training. The 

optimal values of the aforementioned parameters are given in Supplementary data (Table S5).  

3.3.1. Linear QSRR modeling 

The molecular features which affect the chromatographic lipophilicity of androstane derivatives were 

revealed on the basis of the highest R value in LR and PR analysis, while the SS procedure was used 

in multivariate calibration. It must be highlighted that prior to QSRR modeling, PCA was carried out 

-picolyl group and the 

compounds of 17(E)-picolinylidene group. If the difference exists, the QSRR models should be 

formed for separate groups. In this case, PCA based on molecular descriptors pointed out that there is 

no strict separation between these two groups in the variable space (results given in Supplementary 

data, Figures S1-S3), therefore the QSRR modeling is carried out on the both groups together. The 

established LR, PR and MLR models are the following: 

LR1: logk0.90 = 0.35797 (±0.04005) ALOGPs  1.33462 (±0.17507)         (2) 

R
2
 = 0.8246 

LR2: logk0.90 = 0.44518 (±0.04913) Average logP  1.78180 (±0.22085)        (3) 

R
2
 = 0.8285 

PR: logk0.90 = 0.000018 (±0.000015) MP
2  0.03202 (±0.02075) MP + 13.62574 (±7.36103)      (4) 

R
2
 = 0.7496 

MLR1: logk0.90 = 0.39009 (±0.03960) Average logP  0.00644 (±0.00128) CT + 0.00205 (±0.00128) 

DE + 4.28539 (±1.33568)                (5) 

R
2
 = 0.9538                             

MLR2: logk0.90 = 0.31379 (±0.03399) XLOGP3  0.00685 (±0.00135) CT  1.02150 (±0.36183) 

Jhetv + 6.68200 (±1.46962)          

      (6) 

R
2
 = 0.9485 
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MLR3: logk0.90 = 40.04356 (±3.93576) SCAA3  0.11597 (±0.02074) CP + 0.00212 (±0.00077) DE + 

2.89430 (±0.31819)                (7) 

R
2
 = 0.9210 

MLR4: logk0.90 = 0.36138 (±0.05960) Average logP + 0.00277 (±0.00076) DE  0.00276 (±0.00083) 

MP + 0.19114 (±0.81162)               (8) 

R
2
 = 0.9282 

MLR5: logk0.90 = 0.45822 (±0.04500) Average logP  0.02847 (±0.01322) Esr  1.96110 (±0.21706)                                                                                                                             

.                 (9) 

R
2
 = 0.8670 

MLR6: logk0.90 = 0.36361 (±0.03008) ALOGPs  0.01969 (±0.00554) Emax + 0.02356 (±0.01097) 

EGAP  1.21035 (±0.17564)          

    (10) 

R
2
 = 0.9155 

MLR7: logk0.90 = 0.39182 (±0.03467) ALOGPs  0.01714 (±0.00556) Emax  0.06415 (±0.02959) 

EHOMO  1.78929 (±0.38008)             (11) 

R
2
 = 0.9159 

MLR8: logk0.90 = 0.32753 (±0.03418) ALOGPs  17.49395 (±5.68512) FPSA3  0.60873 (±0.27587)  

.                (12) 

R
2
 = 0.8898 

MLR9: logk0.90 = 0.35765 (±0.02826) ALOGPs  0.01475 (±0.00363) E + 0.03507 (±0.01086) EGAP 

 0.98360 (±0.19327)              (13) 

R
2
 = 0.9259 

MLR10: logk0.90 = 0.20208 (±0.04283) ALOGPs  0.01641 (±0.00345) PSA + 0.00436 (±0.00120) 

vdWSA  2.50896 (±0.56880)             (14) 

R
2
 = 0.9301 

MLR11: logk0.90 = 0.33171 (±0.04212) ALOGPs + 0.00424 (±0.00127) TE  0.00436 (±0.00141) BP 

+ 1.79538 (±1.22230)              (15) 

R
2
 = 0.9360 

Since the best QSRR models were obtained for logk0.90, it can be considered further as the best 

-picolyl and 17(E)-picolinylidene androstane 

derivatives. The quality of the obtained models is evaluated by statistical parameters given in Table 3. 

It can be said that MLR models generally have better prediction performance that LR and PR, but LR 

and PR models, which are statistically significant, emphasized the influence of melting point (MP) and 
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lipophilicity (ALOGPs, Average logP) on the logk0.90. However, MLR models reveal which particular 

electrostatic, topological and physicochemical properties can affect retention behavior of androstanes 

in the applied chromatographic system. Those properties are critical temperature (CT), Balaban-type 

index from van der Waals weighted distance matrix (Jhetv), surface weighted charged area on 

acceptor atoms 3rd type (SCAA3), critical pressure (CP), Dreiding energy (DE), mean value of 

electrostatic potential (Esr), maximum value of electrostatic potential (Emax), EGAP, EHOMO, fractional 

charged partial positive surface area 3rd type (FPSA3), the difference between maximum and 

E), polar surface area (PSA), van der Waals surface area (vdWSA) 

and boiling point (BP). The highest regression coefficient of lipophilicity parameters in MLR 

equations confirms the assumption that the retention behavior is mostly affected by distribution of a 

compound between non-polar stationary phase and more polar mobile phase. This is another 

confirmation of logk0.90 as lipophilicity measure of studied androstane derivatives. 

Besides the numerical data, the predictive performance of LR, PR and MLR models has been 

evaluated by graphical comparison of experimental and predicted logk0.90 values, as well as by the 

residuals analysis (Supplementary data, Figures S4-S6). These results show that MLR models make 

better fitting of the data than LR and PR models, which was confirmed by statistical measures given in 

Table 3. Variance Inflation Factor (VIF) suggest that there is no multicollinearity present in MLR 

models (VIF < 10). The randomness of the residuals indicate the unpredictable error and it was 

confirmed for all LR, PR and MLR models.   

Unlike MLR analysis, PCR and PLS modeling were carried out on the basis of intercorrelated 

descriptors.   Selection of the independent variables was done by the correlation matrix. The best PCR 

and PLS models was obtained by using thirteen lipophilicity descriptors (ALOGPs, AClogP, ALOGP, 

MLOGP, KOWWIN, XLOGP2, XLOGP3, Average logP, miLogP, logPvg, logPklop, logPphys, logPwgt) 

and five physicochemical descriptors (vdWV, PSA, vdWSA, SASA1.4, MR). The selection of the 

number of PCs or latent variables (LVs) was done on the basis of the lowest RMSE of LOO cross-

validation (RMSECV) (Supplementary data, Figure S7). In the case of PCR the lowest RMSECV 

corresponds to the number of 8 PCs (99.66% variability), while the PLS model includes 6 LVs 

(98.20% of variability). Regression coefficients of PCR and PLS models and comparisons of 

experimental and predicted logk0.90 values are given in Supplementary data, Table S6 and Figure S8, 

while statistical characteristics are presented in Table 4. The obtained results imply the significance of 

lipophilicity parameters and PSA. In PLS model this was confirmed by Variance Importance in 

Projection (VIP) (Supplementary data, Figure S9). Generally, it can be concluded that PCR and PLS 

models make better fitting of the data than LR, PR and MLR models, having low random residuals. 

3.3.2. Non-linear QSRR modeling 

The next step of the QSRR modeling included non-linear approach based on artificial neural networks. 

This approach can find complex relationships between the variables [37]. The input variables for ANN 
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modeling were the same as the independent variables in MLR models. The input variables were 

normalized by min-max normalization method [48]. The number of hidden neurons varied in the range 

of 2-200. The following MLP activation functions were combined for hidden and output neurons: 

logistic (Lgt), identity (Idt), exponential (Exp), tangent (Tanh) and sinusoidal (Sine). During ST-ANN 

regression modelling with Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm 28 000 networks 

have been trained. The test set contains compounds 7, 10 and 16, while the compounds 12, 14 and 24 

belong to the validation set. 

The best five ANN models were selected on the basis of statistical parameters given in Table 5. The 

statistics undoubtedly indicate the ANN models as the best solution for prediction of logk0.90 parameter 

of studied androstanes in the used chromatographic system. The concurrence between the 

experimental and predicted data, as well as the random distribution of residuals, for representative 

ANN model are presented in Figure 5 and for the other ANN models are shown in Figure S10 in 

Supplementary data. The input variables of ANN models are characterized by global sensitivity 

analysis (GSA) coefficients, which present the ratio between the network error when the observed 

variable is omitted and the network error when the observed variable is present in the model [49]. The 

variable should be omitted from the ANN model if the GSA coefficient is equal to or less than 1 [49]. 

In this case, all the input variables are significant (Supplementary data, Figure S11). The highest GSA 

coefficients distinguish the lipophilicity descriptors (XLOGP3 and Average logP) as the most 

significant input variables in ANN models. This is another confirmation of the hypothesis that logk0.90 

-picolyl and 17(E)-picolinylidene 

androstane derivatives. 

 

3.4. Ranking of the QSRR models: a novel point of view toward models quality 

After the definition of relationships between selected molecular features and chromatographic 

lipophilicity, the selection of the most reliable QSRR models was carried out. In order to rank the 

models by SRD method, the experimental and average logk0.90 values were applied as the reference 

ranking. The average values as the reference ranking contain less bias than ranking by any of the 

individual vectors [33]. The aim of ranking analysis based on the experimental data was to describe 

fits, not experimental errors. The ranking was completely validated by CRRN (comparison of ranks by 

random numbers) method and seven-fold cross-validation procedures. The results of SRD analysis are 

presented in Table 6.  

The ranking based on the experimental values indicate that the ANN models are the closest to the 

experimental data and make the best data fitting. This is completely in agreement with the statistical 

parameters, which distinguished the ANN models as the best solution for precise prediction of logk0.90 

values. The worst one is the PR model and should be avoided in prediction of the chromatographic 
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lipophilicity of studied androstane derivatives. The second approach, which included the average 

values as the reference, showed that MLR10 model is the closest to the reference ranking, while the 

PR model is the farthest. Low prediction ability of the PR model is definitely confirmed, therefore it 

cannot be recommended for further application. Although the majority of the MLR models and PCR 

and PLS models are closer to the reference ranking than the EXP values, it is not a definitive 

indication of overfitting, since the phenomenon can be simply the consequence of random noise [42]. 

Very low probabilities, p(%) given in Table 6, describe the established QSRRs as non-random models.  

Generally, taking into account calculated statistical parameters and ranking analysis, the ANN models 

are the best tool for prediction of the chromatographic lipophilicity (logk0.90 -picolyl and 17(E)-

picolinylidene androstane derivatives. 

 

4. CONCLUSION 

Since the androstane derivatives, studied in this paper, have a great anticancer potential, the presented 

results of experimental lipophilicity determination and its prediction are the first step in their further 

biological analysis in vivo. The obtained results describe -picolyl and 17(E)-picolinylidene 

androstane derivatives as lipophilic compounds and present the best mathematical (QSRR) models 

which can be used for precise prediction of lipophilicity of these compounds. The QSRR analysis 

pointed out the molecular features which influence the total molecular lipophilicity. The obtained 

QSRR models can be extremely useful in assessing chromatographic lipophilicity of new -picolyl 

and 17(E)-picolinylidene androstane derivatives as potential anticancer compounds. 
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Table 1. -picolyl and 17(E)-picolinylidene androstane derivatives 

Compound No. 2D structure Compound No. 2D structure 

1 

 

13 

 

2 

 

14 

 

3 

 

15 

 

4 

 

16 

 

5 

 

17 

 

6 

 

18 

 

7 

 

19 

 

8 

 

20 

 

9 

 

21 

 

10 

 

22 

 

11 

 

23 

 

12 

 

24 
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Table 2. k values of the substitution of introduction of different functional groups (substituents) or 

the change in the position of double bonds (   volume fraction of the organic modifier)   

The compared compounds  

Substitution or introduction of 

substituents / the difference 

between the position of double 

bonds 

k  

(  = 0,90) 

k  

(  = 0,70) 

T
h

e 
co

m
p

a
ri

so
n

 o
f 

co
m

p
o

u
n

d
s 

w
h

ic
h

 

b
el

o
n

g
 t

o
 t

h
e 

sa
m

e 
g

ro
u

p
 

1 and 2 3-OH  3-AcO 1.880 3.074 

6 and 7 3-OH  3-AcO 2.003 3.301 

1 and 6 5-en  4-en -0.372 -0.146 

2 and 7 5-en  4-en -0.249 0.081 

13 and 12 3-OH  3-AcO 3.681 9.127 

14 and 16 N  N O -1.001 -0.728 

12 and 18 N  N O -4.146 -7.296 

21 and 17 4-NO2 -4.635 -8.425 

12 and 21 5-en  4-en -0.612 -2.272 

13 and 20 5-en  4-en -0.225 -0.213 

14 and 19 4-OCH3 0.350 0.127 

T
h

e 
co

m
p

a
ri

so
n

 o
f 

co
m

p
o

u
n

d
s 

w
h

ic
h

 

b
el

o
n

g
 t

o
 d

if
fe

re
n

t 

g
ro

u
p

s 

10 and 24 

-picolyl- -hydroxy 
 

17(E)-picolinylidene 

10.012 10.524 

1 and 13 1.701 2.129 

2 and 12 3.502 8.182 

8 and 22 0.435 0.756 

4 and 15 0.607 0.572 

3 and 14 0.778 0.986 
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Table 3. Statistical characteristics of LR, PR and MLR QSRR models 

 

Parameter 

 

LR1 LR2 PR MLR1 MLR2 MLR3 MLR4 MLR5 MLR6 MLR7 MLR8 MLR9 MLR10 MLR11 

R 0.9081 0.9102 0.8658 0.9766 0.9739 0.9597 0.9634 0.9311 0.9568 0.9570 0.9433 0.9622 0.9644 0.9675 

R2 0.8246 0.8285 0.7496 0.9538 0.9485 0.9210 0.9282 0.8670 0.9155 0.9159 0.8898 0.9259 0.9301 0.9360 

R2
a 0.1754 0.1715 0.2504 0.0462 0.0515 0.0790 0.0718 0.1330 0.0845 0.0841 0.1102 0.0741 0.0699 0.0640 

R2
adj 0.8142 0.8184 0.7183 0.9445 0.9382 0.9052 0.9138 0.8504 0.8986 0.8990 0.8760 0.9110 0.9161 0.9232 

F-test 79.90 82.10 23.94 103.20 92.10 58.26 64.65 52.15 54.16 54.43 64.59 62.43 66.53 73.16 

RMSE 0.1909 0.1887 0.2351 0.1043 0.1101 0.1364 0.1300 0.1713 0.1410 0.1407 0.1559 0.1321 0.1283 0.1227 

p-value 0.000000 0.000000 0.000015 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

VIF - - - 

 
2.13 (Av. logP) 

1.67 (CT) 
1.38 (DE) 

 

1.71 (XLOGP3) 
1.67 (CT) 

1.05 (Jhetv) 

1.28 (SCAA3) 
1.16 (CP) 
1.32 (DE) 

3.10 (Av. logP) 
1.41 (DE) 
3.05 (MP) 

1.02 (Av. logP) 
1.02 (Esr) 

1.03 (ALOGPs) 
1.01 (Emax) 
1.04 (Egap) 

1.38 (ALOGPs) 
1.02 (Emax) 
1.39 (Ehomo) 

1.09 (ALOGPs) 
1.09 (FPSA3) 

 
1.04 (ALOGPs) 

1.14 E) 
1.16 (Egap) 

 

2.53 (ALOGPs) 
4.65 (PSA) 

2.55 (vdWSA) 
2.68 (ALOGPs) 

R2
CV (LOO) 0.7781 0.7746 0.6476 0.9191 0.9067 0.8700 0.8439 0.8055 0.8707 0.8752 0.8501 0.8923 0.8883 1.44 (TE) 

|R2  R2
CV| 0.0465 0.0539 0.1020 0.0347 0.0418 0.0510 0.0843 0.0615 0.0448 0.0407 0.0397 0.0336 0.0418 2.06 (BP) 

TSS 3.5303 3.5303 3.5303 3.5303 3.5303 3.5303 3.5303 3.5303 3.5303 3.5303 3.5303 3.5303 3.5303 0.8957 

PRESS 0.7832 0.7958 1.2440 0.2855 0.3292 0.4590 0.5511 0.6868 0.4565 0.4407 0.5291 0.3803 0.3945 0.0403 

PRESS/TSS 0.2219 0.2254 0.3524 0.0809 0.0932 0.1300 0.1561 0.1945 0.1293 0.1248 0.1499 0.1077 0.1117 3.5303 

SDPRESS 0.2030 0.2047 0.2559 0.1226 0.1316 0.1554 0.1703 0.1901 0.1550 0.1523 0.1669 0.1415 0.1441 0.3683 

Rtest 0.9489 0.9199 0.8147 0.9160 0.9494 0.9096 0.9239 0.9714 0.9829 0.9398 0.9172 0.9548 0.9720 0.1043 

RMSEtest 0.0963 0.1067 0.1601 0.1258 0.1011 0.1684 0.1261 0.0688 0.0612 0.1213 0.1444 0.0971 0.0989 0.1392 
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Table 4. Statistical characteristics of PCR and PLS models 

Parameters PCR PLS 

R
2
Ycumul 0.9754 0.9789 

Q
2
Ycumul 0.9189 0.9047 

R 0.9879 0.9896 

R
2
 0.9760 0.9793 

Rtest 0.9777 0.9759 

R
2
test 0.9558 0.9524 

R
2
CV 0.9210 0.9075 

RMSE 0.0667 0.0619 

RMSECV 0.1213 0.1317 

RMSEtest 0.1418 0.1357 

PRESS/TSS 0.0790 0.0925 

F-vrednost 512.00 577.24 

p-vrednost 0.000000 0.000000 
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Table 5. Statistical characteristics of ANN models 

Parameters ANN1 ANN2 ANN3 ANN4 ANN5 

Architecture  

(input - hidden layer - 

output) 

3-48-1 3-123-1 3-115-1 3-3-1 3-28-1 

Input variables 

Average logP 

CT 

DE 

XLOGP3 

CT 

Jhetv 

XLOGP3 

CT 

Jhetv 

XLOGP3 

CT 

Jhetv 

XLOGP3 

CT 

Jhetv 

Rcalib 0.9766 0.9906 0.9877 0.9815 0.9810 

Rtest 0.9875 0.9881 0.9956 0.9999 0.9998 

Rvalid 0.9990 1.0000 0.9998 1.0000 0.9999 

RMSEcalib 0.003 0.001 0.002 0.002 0.002 

RMSEtest 0.006 0.003 0.001 0.000 0.001 

RMSEvalid 0.001 0.003 0.002 0.001 0.001 

F-test 630.43 1288.03 1353.00 1061.87 1015.55 

Algorithm BFGS (36)* BFGS (56) BFGS (35) BFGS (29) BFGS (39) 
p-value 0.000000 0.000000 0.000000 0.000000 0.000000 

Hidden activation 

function 
Exp Tanh Tanh Lgt Lgt 

Output activation 

function 
Sine Idt Idt Sine Sine 

*the number in brackets is the number of the training cycles after which the best neural architecture was achieved  
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Table 6. The ranking of the analyzed QSRR models obtained by SRD analysis (XX1  first icosaile, 
5%, Q1  first quartile, Q3  last quartile, XX19  last icosaile, 95%)  

Rank 

 

QSRR 

model 

 

Absolute 

SRD 

value 

Probability (p%) 

x1    2 

 

QSRR 

model 

 

Absolute 

SRD 

value 

Probability (p%) 

x1    2 

 Reference: Experimental logk0.90 values Reference: Average logk0.90 values 

1 ANN5 24 1.91 ·  10-9 3.26 ·  10-9 MLR10 18 3.82 ·  10-10 6.55 ·  10-10 

2 ANN3 26 3.26 ·  10-9 5.20 ·  10-9 MLR9 20 6.55 ·  10-10 1.07 ·  10-9 

3 ANN4 28 5.20 ·  10-9 9.05 ·  10-9 MLR2 22 1.07 ·  10-9 1.91 ·  10-9 

4 ANN2 32 1.53 ·  10-8 2.45 ·  10-8 MLR7 22 1.07 ·  10-9 1.91 ·  10-9 

5 ANN1 34 2.45 ·  10-8 4.04 ·  10-8 PLS 24 1.91 ·  10-9 3.26 ·  10-9 

6 MLR10 38 6.78 ·  10-8 1.08 ·  10-7 MLR8 28 5.20 ·  10-9 9.05 ·  10-9 

7 PLS 38 6.78 ·  10-8 1.08 ·  10-7 MLR11 28 5.20 ·  10-9 9.05 ·  10-9 

8 PCR 40 1.08 ·  10-7 1.71 ·  10-7 MLR1 30 9.05 ·  10-9 1.53 ·  10-8 

9 MLR1 42 1.71 ·  10-7 2.84 ·  10-7 MLR6 30 9.05 ·  10-9 1.53 ·  10-8 

10 MLR2 42 1.71 ·  10-7 2.84 ·  10-7 PCR 30 9.05 ·  10-9 1.53 ·  10-8 

11 MLR7 42 1.71 ·  10-7 2.84 ·  10-7 EXP* 32 1.53 ·  10-8 2.45 ·  10-8 

12 MLR8 44 2.84 ·  10-7 4.51 ·  10-7 MLR3 32 1.53 ·  10-8 2.45 ·  10-8 

13 MLR9 44 2.84 ·  10-7 4.51 ·  10-7 ANN5 32 1.53 ·  10-8 2.45 ·  10-8 

14 MLR11 44 2.84 ·  10-7 4.51 ·  10-7 LR1 34 2.45 ·  10-8 4.04 ·  10-8 

15 MLR6 46 4.51 ·  10-7 6.86 ·  10-7 ANN4 34 2.45 ·  10-8 4.04 ·  10-8 

16 MLR5 50 1.12 ·  10-6 1.77 ·  10-6 ANN1 36 4.04 ·  10-8 6.78 ·  10-8 

17 MLR4 54 2.66 ·  10-6 4.21 ·  10-6 ANN3 36 4.04 ·  10-8 6.78 ·  10-8 

18 LR2 56 4.21 ·  10-6 6.57 ·  10-6 MLR5 38 6.78 ·  10-8 1.08 ·  10-7 

19 MLR3 56 4.21 ·  10-6 6.57 ·  10-6 ANN2 40 1.08 ·  10-7 1.71 ·  10-7 

20 LR1 60 9.84 ·  10-6 1.49 ·  10-5 LR2 42 1.71 ·  10-7 2.84 ·  10-7 

21 PR 84 1.03 ·  10-3 1.44 ·  10-3 MLR4 48 6.86 ·  10-7 1.12 ·  10-6 

22 XX1 148 4.72 5.50 PR 72 1.13 ·  10-4 1.60 ·  10-4 

 Q1 174 23.11 25.65 XX1 148 4.72 5.50 

 Median 190 48.91 52.04 Q1 174 23.11 25.65 

 Q3 208 72.68 75.12 Median 190 48.91 52.04 

 XX19 232 94.72 95.57 Q3 208 72.68 75.12 
*Experimental values (EXP) were used as a detector of overfitted models 
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Figure 1. Capacity factors (k) of the analyzed androstane derivatives obtained by using two mobile 

phases with different methanol/water ratio (  - methanol/water = 90/10,  - methanol/water = 70/30) 
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A                  B      C 

 

Figure 2. Computational modeling of Poisson-Boltzmann electrostatic potential surface (A), 

hydrophilic ( ) and lipophilic ( ) surfaces (B) by Bioluminate® program and HOMO-LUMO orbitals 

-picolyl-androst-5-en- -diol (compound 1) projected by ChemBio3D v. 14 program (C) 
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Figure 3. 3D model of hydrophilic and lipophilic surfaces of a segment of C-18 stationary phase with 

redundant silanol groups, modeled by Bioluminate® progam 
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Figure 4. Linear correlation between in silico lipophilicity (Average logP) and experimental 

chromatographic lipophilicity (logk0.90 and logk0.70) defined by using two mobile phases (  = 0.70 and 

 = 0.90)  
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         A                                                                                 B 

 

 

Figure 5. The comparison of experimental logk0.90 and logk0.90 predicted by ANN1 model (A) and 

distribution of the residuals (B) (  - calibration set,  - test set,  - validation set) 
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