
Citation: Filipović, V.; Lončar, B.;
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Featured Application: Developed mathematical models and correlations describing the effects of
the high-osmolality environment of sugar beet molasses on the viability of selected microorgan-
isms, allowing a better understanding and management of the safety of different products during
the application of molasses in food processing.

Abstract: In this research series, several sugar beet molasses of different osmolalities were inoculated
with a mix of the following microorganisms, Escherichia coli, Salmonella spp. and Listeria monocytogenes,
to develop mathematical models and correlations of the effect of different levels of osmolality and
different exposure time to the viability of the selected microorganisms. The respective enumerations
of Escherichia coli, Salmonella spp., Listeria monocytogenes, Enterobacteriaceae, and total plate count
were conducted on inoculated molasses samples of different osmolalities (from 5500 to 7000 mmol/kg)
and at different exposure times (from 0 to 5 h). The results showed that by increasing molasses
osmolalities, all the selected microorganisms’ exposure time viability measures statistically decreased
significantly. Salmonella spp. showed the highest viability of all the tested microorganisms in a high
osmotic environment. In contrast, Listeria monocytogenes showed the least resilience to osmotic stress,
with a reduction in the numbers below the detection limit. The developed mathematical models
of microorganisms’ viability exposed to molasses’s high-osmolality environment were statistically
significant, allowing for the good prediction of a number of microorganisms based on exposure time
and osmolality levels. The obtained results describe molasses’s excellent microbial load-reducing
capability and provide the potential for applications in the production of safe foods.

Keywords: sugar beet molasses; osmolality; Escherichia coli; Listeria monocytogenes; Salmonella spp.

1. Introduction

Sugar beet molasses (molasses) is a common raw material used primarily in industrial
fermentations, characterized by high dry matter and phenolic compound content [1,2].
Sugar beet molasses provides high osmotic pressure during osmotic drying and has been
recently utilized as a cost-effective alternative medium [3–5] to other conventional osmotic
solutions for drying meat [6–8], fruits [9], vegetables [10], and plants [11]. In addition, it
is shown that molasses’s chemical compounds, such as polyphenols and inorganic salts,
provide significant potential in reducing foodborne bacteria activities [12,13].

Osmotic pressure, by which molasses is characterized with high values, is a colligative
property of the solution, while osmolality presents a solution to the osmotic concentration,
the measure of osmotic pressure [14].

Microorganisms experience osmotic stress when in contact with a hyperosmotic solu-
tion, such as molasses. Osmotic pressure changes cause significant stress on bacteria cells
by leading to dehydration and shrinkage in hypertonic environments [15,16].
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Commission Regulation (EU) No 2073/2005 [17] identifies Salmonella, E. coli, and
L. monocytogenes as the most important microorganisms according to the food safety and
process hygiene criteria. From a public health perspective, these three microorganisms are
important for the following reasons:

- Salmonella is the most essential pathogen originating from poultry, owing to salmonel-
losis, one of the most frequent diseases in public health [18];

- E. coli is an indirect indicator of fecal contamination and is exceptionally significant
because of the highly pathogenic isolates of 0157:H7 [19,20];

- L. monocytogenes, a significant foodborne pathogen, is sometimes correlated with
poultry products and occasionally leads to clinical disease in poultry [19].

The microorganisms mentioned above possess different mechanisms to endure harsh
environmental conditions. For example, Salmonella exposure to an environment character-
ized by high osmotic pressure leads to water loss and subsequent significant cell shrinkage,
a consequent increase of all intracellular metabolites’ concentrations. In addition, instant
plasmolysis can result in the inhibition of a variety of physiological processes, ranging from
nutrient uptake to DNA replication [21].

E. coli possesses different mechanisms that can persevere osmotic and desiccation
stress and show long-term viability in challenging environmental conditions [22], while
L. monocytogenes have developed processes to withstand increased osmotic pressure via
compatible solutes, intracellular accumulation, and the modification of the adaptive cell
envelope and proteomes [23,24]. A number of proteins are involved in the osmotic stress
response of L. monocytogenes cells [25]. These proteins include transport ones, compatible
solute uptake, cell wall modification proteins, regulatory proteins, and proteins acting
against general stress [21].

The possibility of applying artificial neural networks (ANNs) in diverse utilizations
has caused it to become essential in modeling and optimizing food control and preservation
processes [26,27]. Artificial neural networks (ANNs) are applicable for clustering data
libraries, understanding distribution patterns, and recognizing internal pathways. An
ANN consists of a matrix with the cells as the network neurons, while the synapses are the
connections between the cells [28,29]. Synapses are specific negative or positive correlations
between values in the cells. An ANN’s structure defines the number of synapses of each
cell or neuron. It can be only one of or several of them. The input neuron is the cell with
entered data, while the output neuron is the cell with total values. The hidden neurons
contain the algorithm that calculates a specific function or activation function, and these
cells connect the input and output neurons. The activation function and the synapses’
values can be randomly defined or set with selected parameters during neural network
structure compiling. The parameter that affects the volume of change in synapses’ values
(an increment parameter) is also defined before the network is started, and it directly
influences the speed of network learning [30].

The main advantage of ANNs includes their ability to learn from pre-existing experi-
ences and generalize solutions for the next applications. Some other advantages are their
ability to retrieve details from incomplete or noisy data and their suitability for providing
solutions where algorithms are difficult to establish or do not exist [31].

The goal of this research is to develop mathematical models and correlations of the
effect of different levels of osmolality and different exposure times to the viability of selected
microorganisms when exposed to the high osmotic pressure environment of sugar beet
molasses. The developed models could be used in a practical manner in the different foods’
osmotic dehydration processes, where the information regarding food safety could be
calculated and foreseen before the start of the process.

2. Materials and Methods
2.1. Preparation of Sugar Beet Molasses Solutions

Molasses, with an initial osmolality of 7370 mmol/kg, was provided by the sugar
factory “Crvenka” A.D. factory, Crvenka, Serbia. For the dilution of starting molasses, dis-
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tilled water was used to the preset osmolality values (5500, 5750, 6000, 6250, 6500, 6750, and
7000 mmol/kg). The osmolality of molasses and diluted molasses was measured and tested
with a pressure osmometer: VaproR-Vapor, model 5600, ELITechGroup, Puteaux, France.

The initial microbiological profile for molasses was established by the standard ISO
methods for the tested microorganisms, as follows: E. coli—<10 cfu/g (ISO 16649-2:2001 [32]);
Salmonella spp.—negative in 25 g (ISO 6579-1:2017 [33]); L. monocytogenes—<10 cfu/g (ISO
11290-2:2017 [34]); Enterobacteriaceae—<10 cfu/g (ISO 21528-2:2017 [35]). Meanwhile, the
total plate count (TPC) was 60 cfu/g (ISO 4833-1:2014 [36]). The quantification limit was
<10 cfu/g for every standard ISO method used for the enumeration of the investigated
microorganisms. However, in the case of Salmonella spp. the detection limit was <1 cfu
in 25 g.

2.2. Contamination of Molasses Solutions

First, 100 g of prepared molasses solution samples were inoculated with referent cul-
tures mixed together: Salmonella enteritidis ATCC 13076, typhimurium ATCC 14028, a mix
of E. coli ATCC 8739 and ATCC 25922 and a mix of L. monocytogenes ATCC 13932 and 19111.
Following reference, strains were used: Salmonella typhimurium ATCC 14028, enteritidis
ATCC 13076, E. coli ATCC 25922 and ATCC 8739, L. monocytogenes ATCC 19111 and ATCC
13932 (Microbiologics, St Cloud, MN, USA). Used microorganisms were chosen as indica-
tors of food safety and process hygiene criteria according to Commission Regulation (EU)
No 2073/2005 [16]. Storing and maintenance of the reference cultures from commercial
sources were performed according to ISO 11133:2014 [37]. Freeze-dried reference cultures
were stored in the refrigerator until the activation time. After opening the package, the
subculture was prepared according to the producers’ instructions. Storage was performed
on slant nutrient agar (Himedia, India) at +4 ◦C of refrigerated temperature. Cultures were
weekly refreshed by sowing to a new slant nutrient agar of the same producer, and after
28 days, cultures were safely removed. Working cultures were obtained from the related
subcultures, via plating onto nutrient agar (Himedia, India) and incubation for 18 to 24 h at
37 ◦C. Next, 24 h old colonies (one or more of them) of the test microorganism working
culture material were transferred by microbiological loop, under aseptic conditions, to the
tube with sterile saline water. Then the tube was intensely shaken on the vortex. Using
a densitometer (DEN-1, Biosan, Latvia), the respectively suspensions’ densities were cor-
rected to match the values of 2 McFarland standards, representing a bacterial concentration
of 6 × 108 cfu/mL, for each referent culture. Using this procedure, the initial suspension
was obtained. From the initial test on the microorganisms’ suspensions, a series of dec-
imal dilutions in sterile saline water were prepared. Further, 1 mL of each dilution was
transferred into a Petri dish and mixed with Tryptic Soya (TSA) agar (Himedia, India), in
an effort to confirm the numbers of the inoculated test microorganisms. All samples of
molasses’ solutions were inoculated with 1 mL of 10−2 dilution to obtain an approximative
360,000 cfu/mL of all test microorganisms.

After the contamination procedure, molasses’ solutions were homogenized, and sam-
ples were taken for the selected microorganisms’ analysis at the beginning of the process,
marked as 0 h [38].

2.3. Incubation Conditions

All prepared, inoculated molasses solution samples were put into a constant temper-
ature chamber (KMF 115 l, Binder, Germany) at 20 ◦C. Every 15 min, samples’ manual
stirring of the same duration and intensity was conducted. After 0.5, 1, 2, 3, and 5 h of
exposure time, inoculated molasses’ solutions samples were taken for the selected microor-
ganisms’ analysis.

2.4. Methods of Analysis of Selected Microorganisms

E. coli enumeration was performed following the standard method, in ISO
16649-2:2001 [32], as follows: after initial suspension preparation in buffered peptone
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water, selected dilutions were prepared, and 1 mL of each dilution was transferred into a
Petri dish and mixed with Tryptone Bile X-glucuronide (TBX) agar (Oxoid, UK). Then the
plates were incubated at 44 ± 1 ◦C for 18–24 h. Typical colonies of β-glucuronidase-positive
E. coli were counted, after the pass of the determined incubation time.

Salmonella spp. enumeration was performed according to the modified standard
method, in ISO 6579-1:2017 [33], and modification was as follows: after initial suspension
preparation in the buffered peptone water, selected dilutions were prepared. Next, 1 mL
of each dilution was transferred and spread onto Xylose Lysine Deoxycholate (XLD) agar
(Oxoid, UK), and then the plates were incubated at 37 ± 1 ◦C for 24 ± 3 h. Typical Salmonella
spp. colonies were confirmed by the application of appropriate biochemical tests, after the
incubation time.

L. monocytogenes enumeration was performed according to the standard method, in
ISO 11290-2:2017 [34], as follows: after initial suspension preparation in buffered peptone
water, selected dilutions were prepared. Next, 1 mL of each dilution was moved and spread
onto Agar Listeria Ottaviani & Agosti (ALOA) (Oxoid, UK). Then the plates were incubated
at 37 ± 1 ◦C for 24 ± 2 h and for an additional incubation for 24 ± 2 h. Presumptive
L. monocytogenes colonies were confirmed by applying appropriate morphological and
biochemical tests, after the pass of incubation.

Enterobacteriaceae enumeration was performed according to the standard method,
in ISO 21528-2:2017 [35], as follows: after initial suspension preparation in the buffered
peptone water, selected dilutions were prepared. Next, 1 mL of each dilution was trans-
ferred into a Petri dish and mixed with Violet Red Bile Glucose (VRBG) agar (Oxoid, UK).
Then the plates were incubated at 37 ± 1 ◦C for 24 ± 2 h. Via tests for the fermentation of
glucose and the presence of oxidase, typical colonies were confirmed, after incubation.

Total plate count (TPC) enumeration was conducted in accordance with the standard
method, in ISO 4833-1:2014 [36], as follows: after initial suspension preparation in the
buffered peptone water, selected dilutions were prepared, and 1 mL of each dilution was
transferred into a Petri dish and mixed with Plate Count (PCA) agar (Oxoid, UK). The plates
were incubated at 30 ◦C for 72 h. Colonies of TPC were counted, after incubation time.

2.5. Response Surface Methodology

Response surface methodology (RSM) was applied to develop the second-order poly-
nomial models. Five models were developed to relate five responses (Y) to two independent
variables (X), in the following form:

Yk = βk0 + ∑2
i=1βkiXi + ∑2

i=1βkiiXi
2 + βkijXiXj k = 1–5; (1)

where βkij are the regression coefficients; Y are either E. coli (Y1), L. monocytogenes (Y2),
Salmonella (Y3), Enterobacteriaceae (Y4), or TPC (Y5) log10 (cfu/g) values, and X represents
exposure time (X1) and molasses osmolality (X2).

Analysis of variance (ANOVA) and application of post hoc Tukey HSD test were used
to determine the significant effect and interaction of individual factors for every response.
ANOVA, RSM, and ANN analysis were calculated by using the software package StatSoft
Statistica ver. 10.0., while the parameters of the post hoc developed models’ quality were
calculated using Microsoft Excel ver. 2016.

2.6. Correlation Analysis

Mean values’ color plot diagram for all independent variables (exposure time and
osmolality level) and responses of microorganisms’ viability in molasses (E. coli, L. mono-
cytogenes, Salmonella spp., Enterobacteriaceae, and TPC) were developed by R software
v.4.0.3 (64-bit version). The corrplot instruction was applied, with the “circle” method, with
the upper type enabled, as a graphical tool to represent the correlation between the tested
responses of observed samples.
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2.7. Principle Component Analysis

Principal component analysis (PCA) was applied as the pattern recognition method, by
using assay descriptors, such as osmolality, exposure time, and the E. coli, L. monocytogenes,
Salmonella spp., Enterobacteriaceae, and TPC of selected microorganisms, to describe and
differentiate various tested samples, their responses, and independent variables.

2.8. Artificial Neural Network Modeling

In order to design the ANN model for predicting all microorganisms’ viability re-
sponses, a multilayer perceptron model was applied to normalized data, including three
layers (input, hidden, and output) [39,40]. The building and the training of the ANN
modeling were conducted as defined earlier by Voća et al. [41].

The neural network model, including the weight coefficients and biases, is defined
with Equation (2):

Y = f1(W2· f2(W1·X + B1) + B2) (2)

where Y is the outputs matrix; f 1 and f 2 are the hidden and output layers transfer functions,
respectively; and X is the matrix of inputs [42].

The weight coefficients W1 and W2 were calculated as described earlier by Brandić et al. [43].
The ANN model was developed to predict the number of E. coli, L. monocytogenes, Salmonella
spp., Enterobacteriaceae, and TPC, according to osmolality and exposure time.

Error Analysis

The calculated ANN model was validated throughout error analysis utilizing the
coefficient of determination (r2), reduced chi-square (χ2), mean bias error (MBE), root mean
square error (RMSE), and mean percentage error (MPE), using Equations (3)–(6) [44]:

χ2=
∑N

i=1
(
xexp, i − xpre,i

)2

N−n
(3)

RMSE=

[
1
N
·

N

∑
i=1

(
xexp, i−xpre,i

)2
]1/2

(4)

MBE=
1
N
·

N

∑
i=1

(
xexp, i−xpre,i

)
(5)

MPE=
100
N

·
N

∑
i=1

(∣∣xpre,i−xexp, i
∣∣

xexp, i

)
(6)

where xexp,i marks the experimental values, xpre,i presents the value obtained by the model,
and N and n are the number of observations and that of constants, respectively.

3. Results and Discussion

Osmolality, as a measure of osmotic pressure [45], was selected thanks to its straight-
forward methodology and quick response availability in the function of potential food
processing and safety control and management. Furthermore, molasses is also character-
ized by high osmotic pressure [1] and the possibility to inhibit microbiological growth [46];
hence, the fast and reliable osmotic pressure method is used.

3.1. RSM Modeling

In Table 1, the average values of five microbiological parameters of the tested microor-
ganisms exposed to molasses at different times and different osmolality levels are shown.
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Table 1. Average values and standard deviations of selected microorganisms’ numbers in molasses at
different exposure times and of different osmolalities.

Run No. Time (h) Osmolality
(mmol/kg)

E. coli
log10(cfu/g)

L. monocytogenes
log10(cfu/g)

Salmonella spp.
log10(cfu/g)

Entero-
bacteriaceae
log10(cfu/g)

TPC log10(cfu/g)

1 0 5500 4.98 ± 0.01 20 4.95 ± 0.01 20 5.06 ± 0.03 20 5.35 ± 0.01 23 5.50 ± 0.01 22

2 0.5 5500 4.96 ± 0.00 20 4.65 ± 0.01 19 4.93 ± 0.01 18 5.27 ± 0.02 19–21 5.36 ± 0.00 21

3 1 5500 4.69 ± 0.01 17 4.52 ± 0.02 17,18 4.80 ± 0.01 15,16 5.06 ± 0.08 15,16 5.19 ± 0.02 17

4 2 5500 4.11 ± 0.05 13 4.31 ± 0.01 13,14 4.71 ± 0.01 11–13 4.82 ± 0.00 13 4.93 ± 0.00 13

5 3 5500 3.88 ± 0.01 9–11 3.16 ± 0.02 8 4.54 ± 0.01 6,7 4.64 ± 0.01 9 4.64 ± 0.01 9

6 5 5500 3.45 ± 0.01 7 2.65 ± 0.07 5 4.49 ± 0.02 5,6 4.54 ± 0.01 5–7 4.55 ± 0.01 6,7

7 0 5750 4.97 ± 0.01 20 4.95 ± 0.01 20 5.02 ± 0.03 19,20 5.33 ± 0.01 22,23 5.48 ± 0.01 22

8 0.5 5750 4.95 ± 0.00 19,20 4.59 ± 0.01 18,19 4.91 ± 0.01 18 5.24 ± 0.02 18–20 5.35 ± 0.01 20,21

9 1 5750 4.64 ± 0.01 16,17 4.48 ± 0.02 16,17 4.79 ± 0.01 14,15 5.06 ± 0.03 16 5.16 ± 0.02 16,17

10 2 5750 4.04 ± 0.06 12 4.24 ± 0.02 12,13 4.68 ± 0.01 10,11 4.80 ± 0.01 12,13 4.92 ± 0.00 13

11 3 5750 3.82 ± 0.00 9 3.07 ± 0.10 11 4.52 ± 0.03 6,7 4.63 ± 0.01 8,9 4.63 ± 0.02 8,9

12 5 5750 3.37 ± 0.04 4–6 2.61 ± 0.01 5 4.47 ± 0.01 4,5 4.51 ± 0.01 5,6 4.53 ± 0.02 6

13 0 6000 4.97 ± 0.01 20 4.94 ± 0.00 20 5.02 ± 0.03 19,20 5.31 ± 0.01 21–23 5.47 ± 0.01 22

14 0.5 6000 4.94 ± 0.00 19,20 4.52 ± 0.01 17,18 4.89 ± 0.00 17,18 5.22 ± 0.02 17–19 5.33 ± 0.01 19–21

15 1 6000 4.61 ± 0.01 15,16 4.45 ± 0.01 15–17 4.76 ± 0.01 13–15 5.00 ± 0.00 14,15 5.13 ± 0.02 116

16 2 6000 3.93 ± 0.04 11 4.20 ± 0.04 11,12 4.67 ± 0.02 10,11 4.80 ± 0.00 12,13 4.90 ± 0.01 13

17 3 6000 3.54 ± 0.01 8 3.04 ± 0.06 7 4.49 ± 0.02 5,6 4.57 ± 0.01 7,8 4.60 ± 0.02 8,9

18 5 6000 3.35 ± 0.04 3–5 2.59 ± 0.02 5 4.44 ± 0.01 3,4 4.48 ± 0.01 4,5 4.50 ± 0.02 4–6

19 0 6250 4.97 ± 0.01 20 4.93 ± 0.00 20 5.02 ± 0.03 19,20 5.30 ± 0.00 20–23 5.47 ± 0.01 22

20 0.5 6250 4.92 ± 0.00 18–20 4.49 ± 0.02 16–18 4.85 ± 0.00 16,17 5.22 ± 0.02 17–19 5.31 ± 0.01 18–20

21 1 6250 4.59 ± 0.01 14–16 4.40 ± 0.02 14–16 4.74 ± 0.01 12–14 4.98 ± 0.00 14 5.11 ± 0.00 15,16

22 2 6250 3.90 ± 0.02 10,11 4.10 ± 0.02 11 4.64 ± 0.01 9,10 4.75 ± 0.01 11,12 4.84 ± 0.01 12

23 3 6250 3.52 ± 0.01 8 3.00 ± 0.06 6,7 4.48 ± 0.01 4–6 4.56 ± 0.02 6,7 4.59 ± 0.01 7,8

24 5 6250 3.32 ± 0.03 3,4 2.32 ± 0.03 4 4.39 ± 0.01 2,3 4.45 ± 0.02 3,4 4.47 ± 0.01 2–4

25 0 6500 4.96 ± 0.01 20 4.93 ± 0.00 20 5.00 ± 0.00 19 5.30 ± 0.00 20–23 5.47 ± 0.01 22

26 0.5 6500 4.91 ± 0.01 18–20 4.47 ± 0.01 15–17 4.85 ± 0.01 16,17 5.19 ± 0.02 17,18 5.29 ± 0.02 18,19

27 1 6500 4.56 ± 0.03 14,15 4.37 ± 0.01 13–15 4.72 ± 0.01 11–13 4.96 ± 0.01 14 5.08 ± 0.00 15

28 2 6500 3.87 ± 0.00 9–11 3.99 ± 0.02 10 4.61 ± 0.01 8,9 4.71 ± 0.01 10,11 4.80 ± 0.00 11,12

29 3 6500 3.47 ± 0.01 7,8 2.98 ± 0.03 6,7 4.45 ± 0.02 4,5 4.52 ± 0.00 5–7 4.55 ± 0.01 6,7

30 5 6500 3.29 ± 0.02 2,3 2.04 ± 0.06 3 4.38 ± 0.03 2,3 4.42 ± 0.01 2,3 4.45 ± 0.02 2,3

31 0 6750 4.95 ± 0.00 19,20 4.92 ± 0.00 20 5.00 ± 0.00 19 5.29 ± 0.02 20–22 5.46 ± 0.02 22

32 0.5 6750 4.89 ± 0.01 18,19 4.42 ± 0.01 15–17 4.84 ± 0.01 16,17 5.18 ± 0.00 17 5.27 ± 0.02 18

33 1 6750 4.54 ± 0.03 14 4.32 ± 0.03 13,14 4.71 ± 0.01 11–13 4.95 ± 0.01 14 5.08 ± 0.00 15

34 2 6750 3.84 ± 0.03 9,10 3.91 ± 0.01 10 4.59 ± 0.01 7,8 4.69 ± 0.01 9,10 4.77 ± 0.01 11

35 3 6750 3.44 ± 0.01 6,7 2.96 ± 0.05 6,7 4.40 ± 0.02 2,3 4.48 ± 0.01 4,5 4.52 ± 0.03 5,6

36 5 6750 3.23 ± 0.04 1,2 1.74 ± 0.06 2 4.33 ± 0.04 1,2 4.38 ± 0.03 1,2 4.42 ± 0.01 1,2

37 0 7000 4.95 ± 0.00 19,20 4.92 ± 0.01 20 5.00 ± 0.01 19 5.28 ± 0.00 20–22 5.45 ± 0.01 22

38 0.5 7000 4.86 ± 0.01 18 4.39 ± 0.01 14–16 4.84 ± 0.01 16,17 5.16 ± 0.02 17 5.27 ± 0.02 18

39 1 7000 4.52 ± 0.03 14 4.20 ± 0.08 11,12 4.69 ± 0.01 11,12 4.94 ± 0.00 14 5.02 ± 0.03 14

40 2 7000 3.82 ± 0.00 9 3.72 ± 0.03 9 4.56 ± 0.01 7,8 4.66 ± 0.01 9,10 4.72 ± 0.01 10

41 3 7000 3.41 ± 0.01 5–7 2.93 ± 0.04 6 4.35 ± 0.01 1,2 4.43 ± 0.02 2–4 4.48 ± 0.02 3–5

42 5 7000 3.19 ± 0.02 1 1.00 ± 0.00 1 4.30 ± 0.03 1 4.35 ± 0.01 1 4.39 ± 0.01 1

1–23 The superscripts’ different numbers in the same table column point to statistically significant differences
between values, at level of significance of p < 0.05, based on a post hoc Tukey HSD test.

The presented results showed that the numbers of E. coli and L. monocytogenes in-
stantly significantly reduced when these microorganisms were inoculated (in numbers of
5.08 log10(cfu/mL)) in molasses for all values of osmolality. Higher values of molasses’s os-
molality have shown a significant instant reduction of Salmonella spp. (from 5750 mmol/kg).
These results point at microorganisms’ viability reduction, as a stress response from an unfa-
vorable high-pressure environment [47]. The values of Enterobacteriaceae and TPC at time
0 in all molasses’s osmolality values, show the same behavior as previous microorganisms
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when in contact with molasses, with a significant instant reduction from the inoculation
numbers of 5.38 and 5.56 log10(cfu/mL) for Enterobacteriaceae and TPC, respectively.

With the prolongation of the exposure time of all tested microorganisms to any of the
tested molasses osmolalities, a further statistically significant decrease in the number of
microorganisms occurred. These results indicated that high-osmolality environments, such
as molasses, had in addition to an instant reduction effect on microorganisms’ viability,
a prolonged reduction effect that increases with the exposure time flow. Chen et al. [13]
reported that the sugar beet molasses antibacterial mechanism may be due to the damaged
cytoplasmic membrane and bacterial proteins caused by sugar beet molasses polyphenols,
changing bacterial cells’ physiology and morphology.

The trends of the effect of the exposure time of the five tested microorganisms to
the high molasses osmolality environment on their viability, expressed as the number of
microorganisms, can be seen in the developed mathematical models’ graphics, shown
in Figure 1a–e.

Figure 1. Graphical presentation of mathematical modeled dependence of (a) E. coli; (b) L. mono-
cytogenes, (c) Salmonella spp.; (d) Enterobacteriaceae, and (e) TPC numbers in molasses at different
exposure time and of different osmolalities.

The presented graphics show that a reduction in the E. coli, Salmonella, Enterobacteri-
aceae, and TPC numbers was more rapid at the beginning of the exposure to the molasses.
The reduction rate decreased at later time points of the exposure (the results and discussion
of the developed mathematical models will describe this quadratic dependence in more
detail). The trend of the number for the L. monocytogenes dependence on exposure time
shows a more linear decrease with the molasses exposure time flow (Figure 1b).

The results of the effect of molasses osmolality levels on the tested microorganisms’
viability (Table 1) show that by increasing osmolality levels at the same exposure time
points, there is a statistically significant decrease in all the tested microorganisms’ values.
The presented results indicate that, in the same way as exposure time, molasses’ osmolality
values also statistically significantly affect all the tested microorganisms’ viabilities. The
trends of the effect of molasses’s osmolality levels on the five tested microorganisms’
viability, expressed as a number of microorganisms, can be seen and compared with the
trends of the effects of the exposure time on the developed mathematical models’ graphics,
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shown in Figure 1a–e. From these graphics, it can be seen that the molasses’ osmolality
had a less significant effect on the microorganisms’ viability than exposure time, which can
be explained by the smaller tested experimental range of osmolality values (from 5500 to
7000 mmol/kg) compared with exposure times’ experimental range (from 0 to 5 h).

The minimal numbers of all the tested microorganisms, indicating maximal reduction,
were obtained when exposed to molasses with maximal osmolality (7000 mmol/kg) at
the longest exposure time (5 h). The highest minimal obtained number was for Salmonella
spp. (4.30 log10(cfu/g)), pointing to the highest resilience to the osmotic stress among
tested microorganisms. The minimal obtained result for E. coli was 3.19 log10(cfu/g), while
the lowest minimal result was for L. monocytogenes (1.00 log10(cfu/g)—below the level
of detection), indicating on total reduction in this inoculated microorganism. The high
levels of reduction in the present tested microorganisms in molasses, in addition to a
high osmotic pressure environment, can be explained by the molasses’ specific chemical
composition. The obtained results are correlated with Chen et al. [13], where the special
antimicrobic activity of molasses’ antioxidative compounds is demonstrated, especially the
phenolic compounds on L. monocytogenes. Shafiqa-Atikah et al. [46] also showed molasses’
antioxidant capabilities and showed that they had high antibacterial activity toward the
selected foodborne pathogens.

RSM was chosen to develop the mathematical models of the selected microorganisms’
viability exposed to the high-osmolality environment of molasses. Table 2 shows the results
of the ANOVA of the RSM models. On the basis of experimental data, mathematical
models were developed for the following microorganisms’ numbers for molasses: E. coli.,
L. monocytogenes, Salmonella spp., Enterobacteriaceae, and TPC. On the basis of these
results, the statistically significant effects of independent variables (exposure time and
molasses osmolality), together with their interactions on mathematical model responses,
were analyzed.

Table 2. ANOVA of TSM models of selected microorganisms in molasses.

Independent
Variables

Term df +

Sum of Squares

E. coli L. monocyto-
genes

Salmonella
spp. Enterobacteriaceae TPC

Exposure Time
Linear 1 15.88 * 38.03 * 1.75 * 3.89 * 5.10 *

Quadratic 1 1.07 * 0.01 0.19 * 0.42 * 0.53 *

Osmolality
Linear 1 0.26 * 1.67 * 0.09 * 0.11 * 0.10 *

Quadratic 1 0.01 0.06 0.00 0.00 0.00

Cross Product Time × osmolality 1 0.04 0.86 * 0.01 * 0.01 * 0.01 *

Error
Residual variance 36 0.50 1.56 0.024 0.03 0.03

Total sum of squares 41 17.77 41.60 2.07 4.46 5.79

R2 0.97 0.96 0.99 0.99 0.99
+ Degrees of freedom, * statistically significant at level of p < 0.05.

A second-order polynomial (SOP) in the form of Equation (1) for five responses
(numbers of E. coli., L. monocytogenes, Salmonella spp., Enterobacteriaceae, and TPC), in
response surface methodology, is used.

The results of Table 2 show that the values of the numbers for all the tested microor-
ganisms (E. coli, L. monocytogenes, Salmonella spp., Enterobacteriaceae, and TPC) were
statistically significantly affected by both the independent variables, where the more in-
fluential variable was shown to be time. The SOP linear terms for exposure time and
osmolality statistically significantly contributed to the formation of mathematical models
for all tested microorganisms. The quadratic term for exposure time was statistically signif-
icant for all the analyzed microorganisms, except for L. monocytogenes. The cross products
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of exposure time and osmolality were statistically significant in cases of the following
microorganisms: L. monocytogenes, Salmonella spp., Enterobacteriaceae, and TPC. Residual
variance, which is used as a mathematical model from the experimental data deviation
measure, was not statistically significant in the cases of all five tested microbial responses.
This indicates that the applied models for the responses of all the tested microorganisms’
numbers adequately represented the viability of these microorganisms in molasses at given
exposure time and osmolality parameters. The coefficient of determination (R2) value
is defined as the ratio of the described variance to the total system variance [48], and it
ranged from 0.96 to 0.99, also indicating a very good correlation of the SOP models with
the experimental values.

Table 3 shows the regression coefficients of five second-order polynomial models for
the numbers of the selected microorganisms in molasses. The statistical significance of the
individual coefficients is also shown.

Table 3. Second-order polynomial regression coefficients for five selected microorganisms in molasses.

E. coli L. monocytogenes Salmonella
spp. Enterobacteriaceae TPC

β0 8.103405 * −1.90308 5.372118 * 5.768105 * 5.468519 *
β1 −0.450115 * 0.52251 * −0.143098 * −0.276613 * −0.351648 *
β11 0.063844 * −0.00506 0.027177 * 0.040088 * 0.045015 *
β2 −0.000890 0.00219 −0.000066 −0.000072 0.000079
β22 0.000000 −0.00000 0.000000 0.000000 −0.000000
β12 −0.000037 −0.00017 * −0.000018 * −0.000017 * −0.000013 *

* Statistically significant at level of p < 0.05.

Regression coefficients are used to complete the mathematical models of the selected
microorganisms’ viability in molasses, as quadratic equations. By solving these equa-
tions with the input values of the independent variables (exposure time and osmolality
level), the values of desired responses (number of E. coli, L. monocytogenes, Salmonella spp.,
Enterobacteriaceae, and TPC) can be calculated. Furthermore, the level of the selected
microorganisms can be predicted in the ranges of the applied values of the independent
variables, the exposure time, and the osmolality level, for which mathematical models
were developed.

3.2. Color Correlation Analysis

Figure 2 shows a color correlation diagram between seven parameters of independent
variables and the responses of microorganisms’ viability in molasses. The values of the
correlation coefficients between the two tested parameters are visually presented by color
(blue for positive and red for negative correlation) and the size of the circles.

The results of the correlation analysis show a high level of positive correlation be-
tween all the responses of the microorganisms’ viability in molasses (number of: E. coli,
L. monocytogenes, Salmonella spp., Enterobacteriaceae, and TPC), while there is a high level
of negative correlation between the independent variable of exposure time and all the
tested microorganisms’ viability responses. The effect of the osmolality level is shown to
have a lower negative correlation on all the microorganisms’ viability responses, with the
highest negative correlation on the Salmonella spp.’s viability response.
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Figure 2. Color correlation diagram between the parameters of the independent variables and the
responses of microorganisms’ viability.

3.3. Principal Component Analysis

PCA was applied to detect the structure in the correlation between the independent
variables’ parameters (time and osmolality) and the microorganisms’ (E. coli, L. monocyto-
genes, Salmonella spp., Enterobacteriaceae, and TPC) viability responses [46].

Figure 3 presents the results of PCA. The goal was to determine the trend visualization
in the shown data and the discriminating efficiency of the used descriptors (time, osmolality,
and the microorganisms’ viability). Therefore, a scatter plot was produced, presenting
the first two principal components from the PCA of the data matrix, the first principal
component at the x-axis, and the second at the y-axis.

A neat separation of 42 tested samples according to different exposure times and
osmolality levels can be seen from the presented scatter plot. The position of the samples
in the figure was influenced by the exposure time and osmolality level, where with the
increasing exposure times and osmolality levels, the location of the samples moved from
negative to positive first principal component (PC) values. The samples in the area with
higher negative first principal component values were characterized by higher levels of
all the tested microorganisms’ numbers and viability. Quality results showed that the first
two PCs accounted for 99.21% of the total variance and could be considered more than
sufficient for data representation.

The contribution of the responses to the first principal component was almost equally
distributed among all the microorganisms’ viability responses. Only the contribution from
the response for L. monocytogenes was slightly lower. However, in the case of the second
principal component, the highest contribution was from the L. monocytogenes’ response.
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Figure 3. PCA of independent variables and the responses of the microorganisms’ viability.

3.4. ANN Modeling

The effect of different levels of osmolality and exposure times on the viability of the
selected microorganisms was investigated by using the ANN model. The acquired optimal
neural network model demonstrated a good generalization capability for the testing data
and could accurately predict the output parameters for the observed input parameters.
According to the ANN performance, the optimal number of neurons in the hidden layer
for the number of E. coli, L. monocytogenes, Salmonella spp., Enterobacteriaceae, and TPC
was 7 (network MLP 2-7-5), with a focus on achieving the highest value of the coefficient
of determination, i.e., R2 (overall 0.999 for ANN throughout the training period), and the
lower values of SOS (Table 4).

Table 4. Artificial neural network model summary (performance and errors).

Network
Name

Performance * Error ** Training
Algorithm

Error
Function

Hidden
Activation

Output
ActivationTrain. Test. Valid. Train. Test. Valid.

MLP 2-7-5 0.999 0.992 0.999 0.004 0.007 0.004 BFGS 222 SOS Logistic Identity

* The performance terms describe the coefficients of determination; ** The error terms show a lack of data for the
ANN model.

The ANN performance is defined as the goodness of fit among the experimentally
measured, and the model-computed outputs (the sum of R2 from the measured and
calculated number of E. coli, L. monocytogenes, Salmonella spp., Enterobacteriaceae, and TPC)
throughout the training steps, the testing, and the validation steps are given in Table 5.

The obtained weights and biases obtained during ANN modeling are shown in
Tables 6 and 7, calculated according to Equation (2).

The ANN model was employed to predict the experimental variables, quite satisfac-
torily, for the observed parameters (as observed in Figure 4, where the experimentally
estimated and ANN model–predicted values are displayed).
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Table 5. Coefficients of determination between experimentally measured and ANN outputs, during
training, testing and validation steps.

Cycle
ANN

E. coli L. monocytogenes Salmonella spp. Enterobacteriaceae TPC

Train 0.9998 0.9969 0.9990 0.9996 0.9995

Test 0.9889 0.9971 0.9868 0.9936 0.9983

Validation 0.9994 0.9992 0.9985 0.9994 0.9998

Table 6. The weight coefficients and biases: W1 and B1, respectively.

Parameter 1 2 3 4 5 6 7

Osmolality −7.598 −10.376 4.913 −6.278 −8.156 −5.626 −9.446

Time 1.027 0.663 −1.211 −0.228 −0.219 0.019 −0.431

Bias 4.354 6.193 −2.841 −1.827 2.056 −1.123 3.374

Table 7. The weight coefficients and biases: W2 and B2, respectively.

Outputs 1 2 3 4 5 6 7 Bias

E. coli −1.975 2.184 0.238 −3.249 3.170 −0.966 −1.380 −0.038

L. monocytogenes 3.812 −0.721 3.187 −2.314 −0.781 3.672 0.430 −2.516

Salmonella spp. −1.050 2.077 1.293 0.412 0.956 1.309 −0.427 −0.883

Enterobacteriaceae −2.312 2.685 0.499 −1.411 3.048 −0.823 −1.563 −0.213

TPC −0.844 1.456 0.758 −0.376 0.957 0.904 −0.157 −0.513

Figure 4 illustrates the experimentally counted and ANN model–predicted values for
E. coli., L. monocytogenes, Salmonella spp., Enterobacteriaceae, and TPC, revealing that the
ANN model satisfactorily predicted the experimental variables.

The Accuracy of the Models and the Residual Analysis

To numerically verify the coefficient of determination (R2) for the accuracy of the
displayed model, the reduced chi-square (χ2), mean bias error (MBE), root mean square
error (RMSE), and mean percentage error (MPE) were calculated, as shown Table 8. In
addition, the model feature fit was examined, and the residual analysis results are presented
in Table 9.

Table 8. The goodness-of-fit tests for the developed ANN model.

Parameter χ2 RMSE MBE MPE SSE AARD r2

E. coli 0.001 0.037 −2.5 × 10−5 0.574 0.041 0.924 0.997

L. monocytogenes 0.007 0.085 0.000 2.553 0.217 1.859 0.994

Salmonella spp. 0.000 0.010 −3.7 × 10−5 0.197 0.003 0.568 0.998

Enterobacteriaceae 9.14 × 10−5 0.009 −0.000 0.145 0.003 0.351 0.999

TPC 0.000 0.012 −1.5 × 10−5 0.196 0.005 0.541 0.999
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Table 9. The residual analysis for the developed ANN model.

Parameter Skew Kurt Mean StDev Var

E. coli 2.294 9.468 −2.5 × 10−5 0.037 0.001

L. monocytogenes −1.509 5.684 0.000 0.086 0.007

Salmonella spp. −0.278 −0.906 −3.7 × 10−5 0.010 0.000

Enterobacteriaceae 0.356 2.228 0.000 0.009 9.14 × 10−5

TPC 0.036 0.861 −1.5 × 10−5 0.012 0.000

Figure 4. Comparison between experimentally obtained and ANN model–predicted values of (a) E.
coli, (b) L. monocytogenes, (c) Salmonella spp., (d) Enterobacteriaceae, and (e) TPC.

The developed ANN model had a minor lack of observed fit tests (Tables 8 and 9),
implying that the ANN model satisfactorily predicted all the responses of the microorgan-
isms’ viability in molasses. In the past decade, ANN models have been successfully used
to model osmotic pretreatment in sugar beet molasses of various food materials, including
pork [47], fish [48], celery [11], cabbage [10], and appels [49]. To our knowledge, the present
study is the first report on the ANN modeling of microorganisms’ viability in sugar beet
molasses depending on the levels of osmolality and different exposure times.
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Experimental validation for developed models in empiric systems of the osmotic
dehydration of different food materials is not covered in the paper, so this research will be
continued in another study, with an elaborated experimental plan of the models’ validation.

4. Conclusions

According to the presented results in this investigation, it can be concluded that the
numbers of the selected microorganisms inoculated to the molasses of different osmolalities
(from 5500 to 7000 mmol/kg) instantly significantly reduced. A prolonged exposure time
led to a statistically significant viability decrease in all the tested microorganisms, where
the rate of reduction decreased with time. Increasing molasses’ osmolality levels led to a
statistically significant decrease in viability for all the tested microorganisms. From all the
tested microorganisms, Salmonella spp. showed the highest viability, while L. monocytogenes
showed the least resilience to osmotic stress, with a reduction down to numbers below the
detection limit. The developed mathematical models were statistically significant, while the
predicted and observed responses had a good correlation, allowing for a good prediction of
the number of microorganisms based on the exposure time and osmolality levels. Further-
more, the correlation and principal component analysis results provided a visualization
of the negative correlation effects between the independent variables (exposure time and
osmolality level) and the viabilities of the selected microorganisms. The obtained results
describe molasses’ excellent microbial load-reducing capability and provide the potential
for applications in the production of safe foods.
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effective diffusivities during osmotic treatment of pork in sugar beet molasses. Hem. Ind. 2015, 69, 241–251. [CrossRef]
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